IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp649-665.html
   My bibliography  Save this article

Event-based cluster synchronization of coupled genetic regulatory networks

Author

Listed:
  • Yue, Dandan
  • Guan, Zhi-Hong
  • Li, Tao
  • Liao, Rui-Quan
  • Liu, Feng
  • Lai, Qiang

Abstract

In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors’ discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

Suggested Citation

  • Yue, Dandan & Guan, Zhi-Hong & Li, Tao & Liao, Rui-Quan & Liu, Feng & Lai, Qiang, 2017. "Event-based cluster synchronization of coupled genetic regulatory networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 649-665.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:649-665
    DOI: 10.1016/j.physa.2017.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303254
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2015. "Cluster synchronization of complex networks via event-triggered strategy under stochastic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 99-110.
    2. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    3. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    2. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    3. Narayanan, G. & Syed Ali, M. & Karthikeyan, Rajagopal & Rajchakit, Grienggrai & Jirawattanapanit, Anuwat, 2022. "Novel adaptive strategies for synchronization control mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    2. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    3. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    5. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    6. Margherita Carletti & Malay Banerjee, 2019. "A Backward Technique for Demographic Noise in Biological Ordinary Differential Equation Models," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    7. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    8. Konstantinos I Papadimitriou & Guy-Bart V Stan & Emmanuel M Drakakis, 2013. "Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-24, February.
    9. Inés P Mariño & Alexey Zaikin & Joaquín Míguez, 2017. "A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-25, August.
    10. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    11. Dhiman, Aman & Poria, Swarup, 2018. "Allee effect induced diversity in evolutionary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 32-38.
    12. Hu, Dandan & Tan, Jieqing & Shi, Kaibo & Ding, Kui, 2022. "Switching synchronization of reaction-diffusion neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    15. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    16. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    17. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    18. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    19. Mario A Marchisio & Jörg Stelling, 2011. "Automatic Design of Digital Synthetic Gene Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.
    20. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:649-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.