IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3905-d1541536.html
   My bibliography  Save this article

Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis

Author

Listed:
  • Dmitry Zhukov

    (Institute of Radio Electronics and Informatics, MIREA-Russian Technological University, 78 Vernadsky Avenue, 119454 Moscow, Russia)

  • Vadim Zhmud

    (Department of Laser Systems, Novosibirsk State Technical University, Prosp. K. Marksa 20, 630073 Novosibirsk, Russia)

  • Konstantin Otradnov

    (Department of Applied Informatics and Intelligent Systems in the Humanities, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia)

  • Vladimir Kalinin

    (Department of Applied Informatics and Intelligent Systems in the Humanities, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia)

Abstract

The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.

Suggested Citation

  • Dmitry Zhukov & Vadim Zhmud & Konstantin Otradnov & Vladimir Kalinin, 2024. "Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis," Mathematics, MDPI, vol. 12(24), pages 1-24, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3905-:d:1541536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Metzler, Ralf & Glöckle, Walter G. & Nonnenmacher, Theo F., 1994. "Fractional model equation for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 13-24.
    2. Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.
    3. Jahanshahi, Hadi & Sajjadi, Samaneh Sadat & Bekiros, Stelios & Aly, Ayman A., 2021. "On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    2. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    4. Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
    5. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    7. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    8. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    9. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    10. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    11. Farwah Ali Syed & Kwo-Ting Fang & Adiqa Kausar Kiani & Muhammad Shoaib & Muhammad Asif Zahoor Raja, 2025. "Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 241-270, January.
    12. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    13. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    18. Lenzi, E.K. & Mendes, R.S. & Gonçalves, G. & Lenzi, M.K. & da Silva, L.R., 2006. "Fractional diffusion equation and Green function approach: Exact solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 215-226.
    19. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.
    20. Razminia, Kambiz & Razminia, Abolhassan & Torres, Delfim F.M., 2015. "Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 374-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3905-:d:1541536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.