IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3820-d1535299.html
   My bibliography  Save this article

Collaborative Optimization Strategy for Dependent Task Offloading in Vehicular Edge Computing

Author

Listed:
  • Xiting Peng

    (School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
    Liaoning Liaohe Laboratory, Shenyang 110033, China
    Shenyang Key Laboratory of Advanced Computing and Application Innovation, Shenyang 110870, China)

  • Yandi Zhang

    (School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Xiaoyu Zhang

    (Liaoning Liaohe Laboratory, Shenyang 110033, China
    School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China
    Shenyang Industrial Smart Chip and Network System Innovation Application Key Laboratory, Shenyang 110084, China)

  • Chaofeng Zhang

    (School of Information and Electronic Engineering, Advanced Institute of Industrial Technology, Tokyo 140-0011, Japan)

  • Wei Yang

    (School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract

The advancement of the Internet of Autonomous Vehicles has facilitated the development and deployment of numerous onboard applications. However, the delay-sensitive tasks generated by these applications present enormous challenges for vehicles with limited computing resources. Moreover, these tasks are often interdependent, preventing parallel computation and severely prolonging completion times, which results in substantial energy consumption. Task-offloading technology offers an effective solution to mitigate these challenges. Traditional offloading strategies, however, fall short in the highly dynamic environment of the Internet of Vehicles. This paper proposes a task-offloading scheme based on deep reinforcement learning to optimize the strategy between vehicles and edge computing resources. The task-offloading problem is modeled as a Markov Decision Process, and an improved twin-delayed deep deterministic policy gradient algorithm, LT-TD3, is introduced to enhance the decision-making process. The integration of LSTM and a self-attention mechanism into the LT-TD3 network boosts its capability for feature extraction and representation. Additionally, considering task dependency, a topological sorting algorithm is employed to assign priorities to subtasks, thereby improving the efficiency of task offloading. Experimental results demonstrate that the proposed strategy significantly reduces task delays and energy consumption, offering an effective solution for efficient task processing and energy saving in autonomous vehicles.

Suggested Citation

  • Xiting Peng & Yandi Zhang & Xiaoyu Zhang & Chaofeng Zhang & Wei Yang, 2024. "Collaborative Optimization Strategy for Dependent Task Offloading in Vehicular Edge Computing," Mathematics, MDPI, vol. 12(23), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3820-:d:1535299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruoyu Chen & Yanfang Fan & Shuang Yuan & Yanbo Hao, 2024. "Vehicle Collaborative Partial Offloading Strategy in Vehicular Edge Computing," Mathematics, MDPI, vol. 12(10), pages 1-17, May.
    2. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    2. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    3. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    4. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    5. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    6. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    7. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
    8. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    9. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    10. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    11. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    12. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    13. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    14. Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
    15. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    16. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    17. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    18. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    19. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    20. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3820-:d:1535299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.