IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3460-d1514727.html
   My bibliography  Save this article

rlaNet: A Residual Convolution Nested Long-Short-Term Memory Model with an Attention Mechanism for Wind Turbine Fault Diagnosis

Author

Listed:
  • Ruiwang Sun

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Longfei Guan

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Naizhe Diao

    (The School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract

This paper proposes a new fault diagnosis model for wind power systems called residual convolution nested long short-term memory network with an attention mechanism (rlaNet). The method first preprocesses the SCADA data through feature engineering, uses the Hermite interpolation method to handle missing data, and uses the mutual information-based dimensionality reduction technique to improve data quality and eliminate redundant information. rlaNet combines residual networks and nested long short-term memory networks to replace traditional convolutional neural networks and standard long short-term memory architectures, thereby improving feature extraction and ensuring the abstractness and depth of the extracted features. In addition, the model emphasizes the weighted learning of spatiotemporal features in the input data, enhances the focus on key features, and improves training efficiency. Experimental results show that rlaNet achieves an accuracy of more than 90% in wind turbine fault diagnosis, showing good robustness. Furthermore, noise simulation experiments verify the model’s resistance to interference, providing a reliable solution for wind turbine fault diagnosis under complex operating conditions.

Suggested Citation

  • Ruiwang Sun & Longfei Guan & Naizhe Diao, 2024. "rlaNet: A Residual Convolution Nested Long-Short-Term Memory Model with an Attention Mechanism for Wind Turbine Fault Diagnosis," Mathematics, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3460-:d:1514727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    2. Monica Borunda & Javier de la Cruz & Raul Garduno-Ramirez & Ann Nicholson, 2020. "Technical assessment of small-scale wind power for residential use in Mexico: A Bayesian intelligence approach," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-26, March.
    3. Da Liu & Guowei Zhang & Baohua Huang & Weiwei Liu, 2016. "Optimum Electric Boiler Capacity Configuration in a Regional Power Grid for a Wind Power Accommodation Scenario," Energies, MDPI, vol. 9(3), pages 1-13, March.
    4. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    5. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    7. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    8. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    9. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    10. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    11. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    13. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    14. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    15. Aktas, Ilter Sahin, 2024. "Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    16. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    17. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    18. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    19. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    20. Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3460-:d:1514727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.