IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3067-d1489409.html
   My bibliography  Save this article

Cutting-Edge Amalgamation of Web 3.0 and Hybrid Chaotic Blockchain Authentication for Healthcare 4.0

Author

Listed:
  • Ajay Kumar

    (Department of Computer Science Engineering and Technology, Bennett University, Greater Noida 201310, India)

  • Kumar Abhishek

    (Department of Computer Science and Engineering, National Institute of Technology, Patna 800005, India)

  • Surbhi Bhatia Khan

    (School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
    Adjunct Research Faculty at the Centre for Research Impact & Outcome, Chitkara University, Rajpura 140401, India)

  • Saeed Alzahrani

    (Management Information System Department, College of Business Administration, King Saud University, Riyadh 11362, Saudi Arabia)

  • Mohammed Alojail

    (Management Information System Department, College of Business Administration, King Saud University, Riyadh 11362, Saudi Arabia)

Abstract

Healthcare 4.0 is considered the most promising technology for gathering data from humans and strongly couples with a communication system for precise clinical and diagnosis performance. Though sensor-driven devices have largely made our everyday lives easier, these technologies have been suffering from various security challenges. Because of data breaches and privacy issues, this heightens the demand for a comprehensive healthcare solution. Since most healthcare data are sensitive and valuable and transferred mostly via the Internet, the safety and confidentiality of patient data remain an important concern. To face the security challenges in Healthcare 4.0, Web 3.0 and blockchain technology have been increasingly deployed to resolve the security breaches due to their immutability and decentralized properties. In this research article, a Web 3.0 ensemble hybrid chaotic blockchain framework is proposed for effective and secure authentication in the Healthcare 4.0 industry. The proposed framework uses the Infura Web API, Web 3.0, hybrid chaotic keys, Ganache interfaces, and MongoDB. To allow for more secure authentication, an ensemble of scroll and Henon maps is deployed to formulate the high dynamic hashes during the formation of genesis blocks, and all of the data are backed in the proposed model. The complete framework was tested in Ethereum blockchain using Web 3.0, in which Python 3.19 is used as the major programming tool for developing the different interfaces. Formal analysis is carried out with Burrows–Abadi–Needham Logic (BAN) to assess the cybersecurity reliability of the suggested framework, and NIST standard tests are used for a thorough review. Furthermore, the robustness of the proposed blockchain is also measured and compared with the other secured blockchain frameworks. Experimental results demonstrate that the proposed model exhibited more defensive characteristics against multiple attacks and outperformed the other models in terms of complexity and robustness. Finally, the paper gives a panoramic view of integrating Web 3.0 with the blockchain and the inevitable directions of a secured authentication framework for Healthcare 4.0.

Suggested Citation

  • Ajay Kumar & Kumar Abhishek & Surbhi Bhatia Khan & Saeed Alzahrani & Mohammed Alojail, 2024. "Cutting-Edge Amalgamation of Web 3.0 and Hybrid Chaotic Blockchain Authentication for Healthcare 4.0," Mathematics, MDPI, vol. 12(19), pages 1-32, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3067-:d:1489409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Gousia Habib & Sparsh Sharma & Sara Ibrahim & Imtiaz Ahmad & Shaima Qureshi & Malik Ishfaq, 2022. "Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing," Future Internet, MDPI, vol. 14(11), pages 1-22, November.
    3. Mandeep Kaur & Surender Singh & Manjit Kaur, 2021. "Computational Image Encryption Techniques: A Comprehensive Review," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahima Habil & Saransh Kumar Srivastav & Pooja Thakur, 2024. "Mapping the landscape of blockchain technology: a bibliometric analysis," Journal of Computational Social Science, Springer, vol. 7(2), pages 1533-1553, October.
    2. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    3. Li, Zhaochen & Xu, Zimu, 2025. "Digital technology and innovation:The impact of blockchain application on enterprise innovation," Technovation, Elsevier, vol. 139(C).
    4. Qiu Peiyao & Zhang Runze, 2024. "The Impact of Blockchain Technology Applications on Enterprise Innovation in the Digital Economy Era: An Empirical Test Based on a PSM-DID Model," SAGE Open, , vol. 14(3), pages 21582440241, August.
    5. Yuemei Ding & Dequan Zheng & Xiaoyu Niu, 2023. "Collaborative Green Innovation of Livestock Product Three-Level Supply Chain Traceability System: A Value Co-Creation Perspective," Sustainability, MDPI, vol. 16(1), pages 1-28, December.
    6. Liu Jiaguo & Zhang Huimin & Zhao Huida, 2021. "Blockchain Technology Investment and Sharing Strategy of Port Supply Chain Under Competitive Environment," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 280-309, June.
    7. Giuseppe Varavallo & Giuseppe Caragnano & Fabrizio Bertone & Luca Vernetti-Prot & Olivier Terzo, 2022. "Traceability Platform Based on Green Blockchain: An Application Case Study in Dairy Supply Chain," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    8. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    9. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    10. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    11. Dong, Ciwei & Huang, Qianzhi & Pan, Yuqing & Ng, Chi To & Liu, Renjun, 2023. "Logistics outsourcing: Effects of greenwashing and blockchain technology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Anhang Chen & Huiqin Zhang & Yuxiang Zhang & Junwei Zhao, 2024. "Manufacturers’ digital transformation under carbon cap-and-trade policy: investment strategy and environmental impact," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    13. Naif Al Azmi & Ghaleb Sweis & Rateb Sweis & Farouq Sammour, 2022. "Exploring Implementation of Blockchain for the Supply Chain Resilience and Sustainability of the Construction Industry in Saudi Arabia," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    14. Gianmarco Bressanelli & Federico Adrodegari & Daniela C. A. Pigosso & Vinit Parida, 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    15. Aditi S. Saha & Rakesh D. Raut & Vinay Surendra Yadav & Abhijit Majumdar, 2022. "Blockchain Changing the Outlook of the Sustainable Food Supply Chain to Achieve Net Zero?," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    16. Gao, Kang & Yuan, Yijun, 2022. "Government intervention, spillover effect and urban innovation performance: Empirical evidence from national innovative city pilot policy in China," Technology in Society, Elsevier, vol. 70(C).
    17. Yan Liu & Chao Shang, 2022. "Application of Blockchain Technology in Agricultural Water Rights Trade Management," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    18. Junjian Wu & Henry Xu, 2021. "Information Leakage and Financing Decisions in a Supply Chain with Corporate Social Responsibility and Supply Uncertainty," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    19. Kangning Zheng & Zuopeng Zhang & Jeffrey Gauthier, 2022. "RETRACTED ARTICLE: Blockchain-based intelligent contract for factoring business in supply chains," Annals of Operations Research, Springer, vol. 308(1), pages 777-797, January.
    20. Deqing Ma & Pengcheng Ma & Jinsong Hu, 2024. "The Impact of Blockchain Technology Adoption on an E-Commerce Closed-Loop Supply Chain Considering Consumer Trust," Sustainability, MDPI, vol. 16(4), pages 1-41, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3067-:d:1489409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.