Machine Learning Prediction of Fuel Cell Remaining Life Enhanced by Variational Mode Decomposition and Improved Whale Optimization Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ruifeng Guo & Dongfang Chen & Yuehua Li & Wenlong Wu & Song Hu & Xiaoming Xu, 2023. "Anode Nitrogen Concentration Estimation Based on Voltage Variation Characteristics for Proton Exchange Membrane Fuel Cell Stacks," Energies, MDPI, vol. 16(5), pages 1-16, February.
- Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
- Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
- Xueshuang Ren & Xin Zhang & Teng Teng & Congxin Li, 2020. "Research on Estimation Method of Fuel Cell Health State Based on Lumped Parameter Model," Energies, MDPI, vol. 13(23), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
- Yin, Cong & Yang, Haiyu & Gong, Xiufang & Cao, Jishen & Tang, Hao, 2025. "Experimental and numerical investigation of the reverse current evolution during the start-up of a fuel cell," Applied Energy, Elsevier, vol. 377(PA).
- Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
- JiHyun Choi & Hyun-Jong Park & Jaeyoung Han, 2025. "Development of Hydrogen Fuel Cell–Battery Hybrid Multicopter System Thermal Management and Power Management System Based on AMESim," Energies, MDPI, vol. 18(2), pages 1-15, January.
- Tian, Lei & Gao, Yan & Yang, Haiyu & Wang, Renkang, 2025. "Multi-scenario long-term degradation prediction of PEMFC based on generative inference informer model," Applied Energy, Elsevier, vol. 377(PA).
- Chuang Sheng & Yi Zheng & Rui Tian & Qian Xiang & Zhonghua Deng & Xiaowei Fu & Xi Li, 2023. "A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC," Energies, MDPI, vol. 16(9), pages 1-16, April.
- Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
- Niu, Tong & Li, Yu & Zhang, Caizhi & Hu, Xiaosong & Wang, Gucheng & Li, Yuehua & Zeng, Tao & Wei, Zhongbao, 2024. "Prediction of fuel cell degradation trends using long short term memory optimization algorithm based on four-module experimental reactor validation," Renewable Energy, Elsevier, vol. 237(PC).
- Li, Ruitao & Ma, Tiancai & Guo, Huijin & Zhao, Jinghui & Zhou, Julong & Shi, Lei & Lin, Weikang & Yao, Naiyuan & Yang, Yanbo, 2025. "Investigation on performance recovery and consistency of proton exchange membrane fuel cell stack under automotive accelerated stress test," Applied Energy, Elsevier, vol. 383(C).
- Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
- Lu, Guolong & Liu, Mingxin & Su, Xunkang & Zheng, Tongxi & Luan, Yang & Fan, Wenxuan & Cui, Hao & Liu, Zhenning, 2024. "Study on counter-flow mass transfer characteristics and performance optimization of commercial large-scale proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 359(C).
- Ying Tian & Qiang Zou & Jin Han, 2021. "Data-Driven Fault Diagnosis for Automotive PEMFC Systems Based on the Steady-State Identification," Energies, MDPI, vol. 14(7), pages 1-17, March.
- Zhang, Yuqi & Li, Yu & Zhang, Caizhi & Yang, Yunzi & Yu, Xingzi & Niu, Tong & Wang, Lei & Wang, Gucheng, 2024. "Intelligent diagnosis of proton exchange membrane fuel cell water states based on flooding-specificity experiment and deep learning method," Renewable Energy, Elsevier, vol. 222(C).
- Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
- Lu, Yirui & Yang, Daijun & Wu, Haoyu & Jia, Linhan & Chen, Jie & Ming, Pingwen & Pan, Xiangmin, 2024. "Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment," Renewable Energy, Elsevier, vol. 234(C).
- Jeon, Kyung-Won & Gong, Ji-Hyeon & Kim, Min-Ju & Shim, Jae-Oh & Jang, Won-Jun & Roh, Hyun-Seog, 2024. "Review on the production of renewable biofuel: Solvent-free deoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Wang, Renkang & Li, Kai & Ming, Yuan & Guo, Wenjun & Deng, Bo & Tang, Hao, 2024. "An enhanced salp swarm algorithm with chaotic mapping and dynamic learning for optimizing purge process of proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 308(C).
- Ma, Yangyang & Wang, Xueyuan & Yuan, Hao & Chang, Guofeng & Zhu, Jiangong & Dai, Haifeng & Wei, Xuezhe, 2025. "Review of electrochemical impedance spectroscopy in fault diagnosis for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
- Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Ren, Peng & Wang, He, 2024. "Novel methods for fault diagnosis and enhancing CO tolerance in PEM fuel cells fueled with impure hydrogen," Applied Energy, Elsevier, vol. 375(C).
- Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
More about this item
Keywords
proton exchange membrane fuel cells; variational mode decomposition; back propagation neural network; degradation prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2959-:d:1484097. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.