IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018135.html
   My bibliography  Save this article

Prediction of fuel cell degradation trends using long short term memory optimization algorithm based on four-module experimental reactor validation

Author

Listed:
  • Niu, Tong
  • Li, Yu
  • Zhang, Caizhi
  • Hu, Xiaosong
  • Wang, Gucheng
  • Li, Yuehua
  • Zeng, Tao
  • Wei, Zhongbao

Abstract

To solve the problem of life prediction of proton exchange membrane fuel cells (PEMFCs), a novel stack with four modules was used to conduct experiments. With the consistent conditions of the experimental stack, the stack voltage data was used as a life indicator to predict the remaining life of PEMFCs and the trend of performance degradation, which was advantageous for early detection of stack operation problems and timely implementation of maintenance measures. Due to the difficulty of obtaining optimal hyperparameter combinations for traditional Long-Short Term Memory (LSTM) neural networks through limited experiments, which affects the prediction accuracy, the Grey Wolf Optimization (GWO) algorithm is introduced. This improved the accuracy of the test set for Module 1 by 10.154 %, and reduced the prediction error for remaining service life by 11.3 %. Modules 2 and 3 were validated using the optimization algorithm, the accuracy of the test set was improved by 12.289 % and 11.044 %, The prediction error for the remaining service life has been reduced by 21.17 and 28.21 h, respectively. The four-module experimental fuel cell stack can provide multiple operating conditions simultaneously to verify the accuracy and effectiveness of the hybrid prediction model proposed in this paper.

Suggested Citation

  • Niu, Tong & Li, Yu & Zhang, Caizhi & Hu, Xiaosong & Wang, Gucheng & Li, Yuehua & Zeng, Tao & Wei, Zhongbao, 2024. "Prediction of fuel cell degradation trends using long short term memory optimization algorithm based on four-module experimental reactor validation," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018135
    DOI: 10.1016/j.renene.2024.121745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.