IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2792-d1474618.html
   My bibliography  Save this article

Hybrid Fuzzy Method for Performance Evaluation of City Construction

Author

Listed:
  • Chun-Ming Yang

    (School of Economics and Management, Dongguan University of Technology, Dongguan 523808, China)

  • Chang-Hsien Hsu

    (Department of Business Administration, Asia University, Taichung 413305, Taiwan)

  • Tian Chen

    (School of Marxism, Dongguan University of Technology, Dongguan 523808, China)

  • Shiyao Li

    (School of Economics and Management, Dongguan University of Technology, Dongguan 523808, China
    School of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

Evaluating the performance of city construction not only helps optimize city functions and improve city quality, but it also contributes to the development of sustainable cities. However, most of the scoring rules for evaluating the performance of city construction are overly cumbersome and demand very high data integrity. Moreover, the properties, change scale, and scope of different evaluation indicators of city construction often lead to uncertain and ambiguous results. In this study, a hybrid fuzzy method is proposed to conduct the performance evaluation of city construction in two phases. Firstly, a city performance index (CPI) was developed by combining the means and standard deviations of indicators of city construction to address the volatility of historical statistical data as well as different types of data. Considering the sampling errors in data analysis, the parameter estimation method was used to derive the 100% × (1 − α ) confidence interval of the CPI. Buckley’s fuzzy approach was then adopted to extend the statistical estimators from the CPI into fuzzy estimators, after which a fuzzy CPI was proposed. To identify the specific improvement directions for city construction, the fuzzy axiom design (fuzzy AD) method was applied to explore the relationship between the targets set by city managers and actual performance. Finally, an example of six cities in China is provided to illustrate the effectiveness and practicality of the proposed method. The results show that the performance of Chongqing on several evaluation indicators is lower than that of other cities. The proposed method takes into account the issues of uniformity and diversity in the performance evaluation of city construction. It can enable a quantitative assessment of the city construction level in all cities and provide theoretical support and a decision-making basis for relevant government departments to optimize city construction planning and scientifically formulate city construction policies.

Suggested Citation

  • Chun-Ming Yang & Chang-Hsien Hsu & Tian Chen & Shiyao Li, 2024. "Hybrid Fuzzy Method for Performance Evaluation of City Construction," Mathematics, MDPI, vol. 12(17), pages 1-13, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2792-:d:1474618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    2. Zhang, Kun & Zhu, Pei-Hua & Qian, Xiang-Yan, 2024. "National information consumption demonstration city construction and urban green development: A quasi-experiment from Chinese cities," Energy Economics, Elsevier, vol. 130(C).
    3. Chen, Kuen-Suan & Wang, Ching-Hsin & Tan, Kim Hua & Chiu, Shun-Fung, 2019. "Developing one-sided specification six-sigma fuzzy quality index and testing model to measure the process performance of fuzzy information," International Journal of Production Economics, Elsevier, vol. 208(C), pages 560-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz J. Ligarski & Tomasz Owczarek, 2024. "Preparing Quality of Life Surveys Versus Using Information for Sustainable Development: The Example of Polish Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 173(3), pages 765-782, July.
    2. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    3. Federico Cugurullo, 2018. "Book review: Sustainable Smart Cities in India: Challenges and Future Perspectives," Urban Studies, Urban Studies Journal Limited, vol. 55(15), pages 3494-3496, November.
    4. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    5. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    6. Mubarak Saad Almutairi, 2024. "Evolutionary Multi-Objective Feature Selection Algorithms on Multiple Smart Sustainable Community Indicator Datasets," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
    7. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    8. Sewoong Hwang & Zoonky Lee & Jonghyuk Kim, 2019. "Real-Time Pedestrian Flow Analysis Using Networked Sensors for a Smart Subway System," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    9. Martina JANUROVA & Marketa CHALOUPKOVA & Josef KUNC, 2020. "Smart City Strategy And Its Implementation Barriers: Czech Experience," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 15(2), pages 5-21, May.
    10. Mona Treude, 2021. "Sustainable Smart City—Opening a Black Box," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    11. Ibrahim Mutambik, 2024. "Culturally Informed Technology: Assessing Its Importance in the Transition to Smart Sustainable Cities," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    12. Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
    13. Balta, Münevver Özge & Balta, Mustafa Tolga, 2022. "Development of a sustainable hydrogen city concept and initial hydrogen city projects," Energy Policy, Elsevier, vol. 166(C).
    14. Yang, Xiaoxi & Zhang, Dansha & Masron, Tajul Ariffin, 2024. "The impact of smart city construction on achieving peak carbon neutrality: Evidence from 31 provinces in China," Land Use Policy, Elsevier, vol. 147(C).
    15. Olszewski, Robert & Wendland, Agnieszka, 2021. "Digital Agora – Knowledge acquisition from spatial databases, geoinformation society VGI and social media data," Land Use Policy, Elsevier, vol. 109(C).
    16. Jia Guo & Shiyan Ma & Xiang Li, 2022. "Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    17. Yituan Liu & Qihang Li & Zheng Zhang, 2022. "Do Smart Cities Restrict the Carbon Emission Intensity of Enterprises? Evidence from a Quasi-Natural Experiment in China," Energies, MDPI, vol. 15(15), pages 1-20, July.
    18. Wang, Mengmeng & Zhou, Tao, 2022. "Understanding the dynamic relationship between smart city implementation and urban sustainability," Technology in Society, Elsevier, vol. 70(C).
    19. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    20. Ibrahim Mutambik, 2024. "Unlocking the Potential of Sustainable Smart Cities: Barriers and Strategies," Sustainability, MDPI, vol. 16(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2792-:d:1474618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.