IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2613-d1462842.html
   My bibliography  Save this article

The Wiener Process with a Random Non-Monotone Hazard Rate-Based Drift

Author

Listed:
  • Luis Alberto Rodríguez-Picón

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Luis Carlos Méndez-González

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Luis Asunción Pérez-Domínguez

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Héctor Eduardo Tovanche-Picón

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

Abstract

Several variations of stochastic processes have been studied in the literature to obtain reliability estimations of products and systems from degradation data. As the degradation trajectories may have different degradation rates, it is necessary to consider alternatives to characterize their individual behavior. Some stochastic processes have a constant drift parameter, which defines the mean rate of the degradation process. However, for some cases, the mean rate must not be considered as constant, which means that the rate varies in the different stages of the degradation process. This poses an opportunity to study alternative strategies that allow to model this variation in the drift. For this, we consider the Hjorth rate, which is a failure rate that can define different shapes depending on the values of its parameters. In this paper, the integration of this hazard rate with the Wiener process is studied to individually identify the degradation rate of multiple degradation trajectories. Random effects are considered in the model to estimate a parameter of the Hjorth rate for every degradation trajectory, which allows us to identify the type of rate. The reliability functions of the proposed model is obtained through numerical integration as the function results in a complex form. The proposed model is illustrated in two case studies based on a crack propagation and infrared LED datasets. It is found that the proposed approach has better performance for the reliability estimation of products based on information criteria.

Suggested Citation

  • Luis Alberto Rodríguez-Picón & Luis Carlos Méndez-González & Luis Asunción Pérez-Domínguez & Héctor Eduardo Tovanche-Picón, 2024. "The Wiener Process with a Random Non-Monotone Hazard Rate-Based Drift," Mathematics, MDPI, vol. 12(17), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2613-:d:1462842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    2. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Massimiliano Giorgio & Fabio Postiglione & Gianpaolo Pulcini, 2020. "Bayesian estimation and prediction for the transformed Wiener degradation process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 660-678, July.
    4. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    6. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2025. "Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization," Applied Energy, Elsevier, vol. 379(C).
    17. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Aven, Terje & Rios Insua, David & Soyer, Refik & Zhu, Xiaoyan & Zio, Enrico, 2025. "Fifty years of reliability in operations research," European Journal of Operational Research, Elsevier, vol. 324(2), pages 361-381.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2613-:d:1462842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.