IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1580-d1397237.html
   My bibliography  Save this article

A Stochastic Semi-Parametric SEIR Model with Infectivity in an Incubation Period

Author

Listed:
  • Jing Zhang

    (School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China)

  • Tong Jin

    (School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China)

Abstract

This paper introduces stochastic disturbances into a semi-parametric SEIR model with infectivity in an incubation period. The model combines the randomness of disease transmission and the nonlinearity of transmission rate, providing a flexible framework for more accurate description of the process of infectious disease transmission. On the basis of the discussion of the deterministic model, the stochastic semi-parametric SEIR model is studied. Firstly, we use Lyapunov analysis to prove the existence and uniqueness of global positive solutions for the model. Secondly, the conditions for disease extinction are established, and appropriate stochastic Lyapunov functions are constructed to discuss the asymptotic behavior of the model’s solution at the disease-free equilibrium point of the deterministic model. Finally, the specific transmission functions are enumerated, and the accuracy of the results are demonstrated through numerical simulations.

Suggested Citation

  • Jing Zhang & Tong Jin, 2024. "A Stochastic Semi-Parametric SEIR Model with Infectivity in an Incubation Period," Mathematics, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1580-:d:1397237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Feng Wang & Shan Wang & Youhua Peng, 2020. "Asymptotic Behavior of Multigroup SEIR Model with Nonlinear Incidence Rates under Stochastic Perturbations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, May.
    3. Piovella, Nicola, 2020. "Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    5. Wei, Fengying & Xue, Rui, 2020. "Stability and extinction of SEIR epidemic models with generalized nonlinear incidence," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuwen Wang & Shaojian Cai & Guangmin Chen & Kuicheng Zheng & Fengying Wei & Zhen Jin & Xuerong Mao & Jianfeng Xie, 2024. "Dynamics of a Dengue Transmission Model with Multiple Stages and Fluctuations," Mathematics, MDPI, vol. 12(16), pages 1-26, August.
    2. Zhou, Yaxin & Jiang, Daqing, 2023. "Dynamic behavior of infectious diseases influenced by TV and social media advertisement," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    7. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    8. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    9. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    10. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    11. Dong, Qiuyue & Wang, Yan & Jiang, Daqing, 2025. "Dynamic analysis of an HIV model with CTL immune response and logarithmic Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    12. Hu, Guixin & Li, Yanfang, 2015. "Asymptotic behaviors of stochastic periodic differential equation with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 403-416.
    13. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    14. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    17. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    18. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    19. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    20. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1580-:d:1397237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.