IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921008109.html
   My bibliography  Save this article

Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate

Author

Listed:
  • Naim, Mouhcine
  • Lahmidi, Fouad
  • Namir, Abdelwahed
  • Kouidere, Abdelfatah

Abstract

In this paper, we consider an fractional SEIR epidemic model with infectious force in the latent period and general nonlinear incidence rate of the form f(S,I)I+g(S,E)E. The global existence, nonnegativity and boundedness of solutions in this system are proved. The basic reproduction number is obtained. We show that the model exhibits two equilibriums: the disease-free and endemic equilibrium. The local stability of each equilibrium are discussed. By means of Lyapunov functionals and LaSalle’s invariance principle, we proved the global asymptotic stability of the equilibria. An application is given and numerical simulation results have been incorporated to support the theoretical results of this work.

Suggested Citation

  • Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008109
    DOI: 10.1016/j.chaos.2021.111456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lianwen Wang & Yong Li & Liuyong Pang, 2016. "Dynamics Analysis of an Epidemiological Model with Media Impact and Two Delays," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-9, January.
    2. Vargas-De-León, Cruz, 2011. "On the global stability of SIS, SIR and SIRS epidemic models with standard incidence," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1106-1110.
    3. Adnane Boukhouima & Khalid Hattaf & Noura Yousfi, 2017. "Dynamics of a Fractional Order HIV Infection Model with Specific Functional Response and Cure Rate," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-8, August.
    4. R. Rakkiyappan & V. Preethi Latha & Fathalla A. Rihan, 2019. "A Fractional-Order Model for Zika Virus Infection with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Li, Guihua & Zhen, Jin, 2005. "Global stability of an SEI epidemic model with general contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 997-1004.
    6. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Fathalla A. Rihan, 2013. "Numerical Modeling of Fractional-Order Biological Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, August.
    8. Xu, Rui, 2014. "Global dynamics of an SEIRI epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 436-444.
    9. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Linhe & Zheng, Wenxin & Shen, Shuling, 2023. "Dynamical analysis of a SI epidemic-like propagation model with non-smooth control," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Cai, Liming & Wu, Jingang, 2009. "Analysis of an HIV/AIDS treatment model with a nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 175-182.
    3. Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
    4. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    5. Gupta, R.P. & Kumar, Arun, 2022. "Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 1-21.
    6. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    7. Agrawal, Khushbu & Kumar, Ranbir & Kumar, Sunil & Hadid, Samir & Momani, Shaher, 2022. "Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    9. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    13. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    14. Aliyu, Major Murtala Bello & Baidu, Ali Audu & Abdulhamid, Bala Ma’aji & Ibrahim, Mohammed Olanrewaju & Mukhtar, Fu’ad Muhammad, 2023. "Assessing the impact of escalating attacks on soft targets by criminal gang: A modelling viewpoint using bifurcation analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 122-137.
    15. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    16. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 684-704.
    17. Li, Yong & Liu, Xianning & Yuan, Yiyi & Li, Jiang & Wang, Lianwen, 2022. "Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    18. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Zhang, Tailei & Teng, Zhidong, 2009. "Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2411-2425.
    20. Li, Guihua & Jin, Zhen, 2005. "Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1177-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.