IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1245-d1087645.html
   My bibliography  Save this article

Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods

Author

Listed:
  • Zilong Zhou

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Hang Yuan

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Xin Cai

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

In order to enhance the ability to represent rock feature information and finally improve the rock identification performance of convolution neural networks (CNN), a new pooling mode was proposed in this paper. According to whether the pooling object was the last convolution layer, it divided pooling layers into the sampling pooling layer and the classification pooling layer. The adaptive pooling method was used in the sampling pooling layer. The pooling kernels adaptively adjusted were designed for each feature map. The second-order pooling method was used by the classification pooling layer. The second-order feature information based on outer products was extracted from the feature pair. The changing process of the two methods in forward and back propagation was deduced. Then, they were embedded into CNN to build a rock thin section image identification model (ASOPCNN). The experiment was conducted on the image set containing 5998 rock thin section images of six rock types. The CNN models using max pooling, average pooling and stochastic pooling were set for comparison. In the results, the ASOPCNN has the highest identification accuracy of 89.08% on the test set. Its indexes are superior to the other three models in precision, recall, F1 score and AUC values. The results reveal that the adaptive and second-order pooling methods are more suitable for CNN model, and CNN based on them could be a reliable model for rock identification.

Suggested Citation

  • Zilong Zhou & Hang Yuan & Xin Cai, 2023. "Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1245-:d:1087645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Diyuan Li & Junjie Zhao & Jinyin Ma, 2022. "Experimental Studies on Rock Thin-Section Image Classification by Deep Learning-Based Approaches," Mathematics, MDPI, vol. 10(13), pages 1-28, July.
    3. Zizi Pi & Zilong Zhou & Xibing Li & Shaofeng Wang, 2021. "Digital Image Processing Method for Characterization of Fractures, Fragments, and Particles of Soil/Rock-Like Materials," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    4. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
    6. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    8. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    9. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    10. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    11. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
    12. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    13. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    15. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Nao Aisu & Masahiro Miyake & Kohei Takeshita & Masato Akiyama & Ryo Kawasaki & Kenji Kashiwagi & Taiji Sakamoto & Tetsuro Oshika & Akitaka Tsujikawa, 2022. "Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review," PLOS Digital Health, Public Library of Science, vol. 1(1), pages 1-12, January.
    17. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
    18. Aglika Kaneva, 2024. "Digitalisation in the Financial Sector," Innovative Information Technologies for Economy Digitalization (IITED), University of National and World Economy, Sofia, Bulgaria, issue 1, pages 264-274, October.
    19. Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    20. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1245-:d:1087645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.