IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p484-d1037786.html
   My bibliography  Save this article

Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia

Author

Listed:
  • Luis Fernando Grisales-Noreña

    (Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Brandon Cortés-Caicedo

    (Departamento de Mecatrónica y Electromecánica, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín 050036, Colombia)

  • Farhad Zishan

    (Department of Electrical Engineering, Sahand University of Technology, Tabriz 5513351996, Iran)

  • Javier Rosero-García

    (Grupo de Investigación Electrical Machines & Drives (EM&D), Departamento de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

Abstract

This paper deals with the problem regarding the optimal operation of photovoltaic (PV) generation sources in AC distribution networks with a single-phase structure, taking into consideration different objective functions. The problem is formulated as a multi-period optimal power flow applied to AC distribution grids, which generates a nonlinear programming (NLP) model with a non-convex structure. Three different objective functions are considered in the optimization model, each optimized using a single-objective function approach. These objective functions are (i) an operating costs function composed of the energy purchasing costs at the substation bus, added with the PV maintenance costs; (ii) the costs of energy losses; and (iii) the total CO 2 emissions at the substation bus. All these functions are minimized while considering a frame of operation of 24 h, i.e., in a day-ahead operation environment. To solve the NLP model representing the studied problem, the General Algebraic Modeling System (GAMS) and its SNOPT solver are used. Two different test feeders are used for all the numerical validations, one of them adapted to the urban operation characteristics in the Metropolitan Area of Medellín, which is composed of 33 nodes, and the other one adapted to isolated rural operating conditions, which has 27 nodes and is located in the department of Chocó, Colombia (municipality of Capurganá). Numerical comparisons with multiple combinatorial optimization methods (particle swarm optimization, the continuous genetic algorithm, the Vortex Search algorithm, and the Ant Lion Optimizer) demonstrate the effectiveness of the GAMS software to reach the optimal day-ahead dispatch of all the PV sources in both distribution grids.

Suggested Citation

  • Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Brandon Cortés-Caicedo & Farhad Zishan & Javier Rosero-García, 2023. "Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:484-:d:1037786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," Renewable Energy, Elsevier, vol. 148(C), pages 1266-1279.
    2. Oscar Danilo Montoya & Carlos Andrés Ramos-Paja & Luis Fernando Grisales-Noreña, 2022. "An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    3. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    4. López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 148, pages 1266-1279.
    5. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    6. Herwin Saito Schultz & Monica Carvalho, 2022. "Design, Greenhouse Emissions, and Environmental Payback of a Photovoltaic Solar Energy System," Energies, MDPI, vol. 15(16), pages 1-24, August.
    7. Naghiloo, Ahmad & Abbaspour, Majid & Mohammadi-Ivatloo, Behnam & Bakhtari, Khosro, 2015. "GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1559-1565.
    8. Bothina El-Sobky & Yousria Abo-Elnaga & Abd Allah A. Mousa & Mohamed A. El-Shorbagy, 2021. "Trust-Region Based Penalty Barrier Algorithm for Constrained Nonlinear Programming Problems: An Application of Design of Minimum Cost Canal Sections," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    2. Luis Fernando Grisales-Noreña & Brandon Cortés-Caicedo & Gerardo Alcalá & Oscar Danilo Montoya, 2023. "Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    3. William Niebles-Nunez & Leonardo Niebles-Nunez & Lorena Hoyos Babilonia, 2022. "Energy Financing in Colombia: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 459-466, March.
    4. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    5. Montoya-Duque, Laura & Arango-Aramburo, Santiago & Arias-Gaviria, Jessica, 2022. "Simulating the effect of the Pay-as-you-go scheme for solar energy diffusion in Colombian off-grid regions," Energy, Elsevier, vol. 244(PB).
    6. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel-Angel Perea-Moreno & Alberto-Jesus Perea-Moreno, 2022. "Optimal Location and Sizing of PV Generation Units in Electrical Networks to Reduce the Total Annual Operating Costs: An Application of the Crow Search Algorithm," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    7. Juan D. Saldarriaga-Loaiza & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Fernando Villada-Duque & Nicolás Muñoz-Galeano, 2022. "Optimal Structuring of Investments in Electricity Generation Projects in Colombia with Non-Conventional Energy Sources," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    8. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    9. Alejandro Betancur-Ramos & John Grimaldo-Guerrero & John William Grimaldo-Guerrero & Juan Rivera-Alvarado & Eilin G mez-Mesino, 2022. "Users, Vehicles Electrics, and Energy Markets in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 11-17, September.
    10. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    11. Ramón Fernando Colmenares-Quintero & Gina Maestre-Gongora & Marieth Baquero-Almazo & Kim E. Stansfield & Juan Carlos Colmenares-Quintero, 2022. "Data Analysis of Electricity Service in Colombia’s Non-Interconnected Zones through Different Clustering Techniques," Energies, MDPI, vol. 15(20), pages 1-16, October.
    12. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2022. "Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    13. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    14. Chul-Yong Lee & Jaekyun Ahn, 2020. "Stochastic Modeling of the Levelized Cost of Electricity for Solar PV," Energies, MDPI, vol. 13(11), pages 1-18, June.
    15. Kerstin Mohr, 2021. "Breaking the Dichotomies: Climate, Coal, and Gender. Paving the Way to a Just Transition. The Example of Colombia," Energies, MDPI, vol. 14(17), pages 1-18, September.
    16. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2023. "Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology," Energies, MDPI, vol. 16(2), pages 1-20, January.
    17. Qudrat-Ullah, Hassan & Kayal, Aymen & Mugumya, Andrew, 2021. "Cost-effective energy billing mechanisms for small and medium-scale industrial customers in Uganda," Energy, Elsevier, vol. 227(C).
    18. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    19. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    20. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:484-:d:1037786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.