IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3057-d1191117.html
   My bibliography  Save this article

New Insights on Robust Control of Tilting Trains with Combined Uncertainty and Performance Constraints

Author

Listed:
  • Fazilah Hassan

    (School of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
    These authors contributed equally to this work.)

  • Argyrios Zolotas

    (Centre for Autonomous and Cyber-Physical Systems, SATM, Cranfield University, Cranfield MK43 0AL, UK
    These authors contributed equally to this work.)

  • George Halikias

    (Department of Mathematics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
    These authors contributed equally to this work.)

Abstract

A rigorous study on optimized robust control is presented for non-preview (nulling-type) high-speed tilting rail vehicles. The scheme utilizes sensors on the vehicle’s body, contrary to that of preview tilt (which uses prior rail track information). Tilt with preview is the industrial norm nowadays but is a complex scheme (both in terms of inter-vehicle signal connections and when it comes to straightforward fault detection). Non-preview tilt is simple (as it essentially involves an SISO control structure) and more effective in terms of (the localization of) failure detection. However, the non-preview tilt scheme suffers from performance limitations due to non-minimum-phase zeros in the design model (due to the compound effect of the suspension dynamic interaction and sensor combination used for feedback control) and presents a challenging control design problem. We proposed an optimized robust control design offering a highly improved non-preview tilt performance via a twofold model representation, i.e., (i) using the non-minimum phase design model and (ii) proposing a factorized design model version with the non-minimum phase characteristics treated as uncertainty. The impact of the designed controllers on tilt performance deterministic (curving acceleration response) and stochastic (ride quality) trade-off was methodically investigated. Nonlinear optimization was employed to facilitate fine weight selection given the importance of the ride quality as a bounded constraint in the design process.

Suggested Citation

  • Fazilah Hassan & Argyrios Zolotas & George Halikias, 2023. "New Insights on Robust Control of Tilting Trains with Combined Uncertainty and Performance Constraints," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3057-:d:1191117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Humam Al-Baidhani & Abdullah Sahib & Marian K. Kazimierczuk, 2023. "State Feedback with Integral Control Circuit Design of DC-DC Buck-Boost Converter," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    2. Roger Vickerman, 1997. "High-speed rail in Europe: experience and issues for future development," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 21-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ba Huy Nguyen & Igor B. Furtat, 2023. "Output Stabilization of Linear Systems in Given Set," Mathematics, MDPI, vol. 11(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    2. Lan, Xiujuan & Hu, Zheneng & Wen, Chuanhao, 2023. "Does the opening of high-speed rail enhance urban entrepreneurial activity? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    4. Garmendia, M. & Ureña, J.M. & Coronado, J.M., 2011. "Long-distance trips in a sparsely populated region: The impact of high-speed infrastructures," Journal of Transport Geography, Elsevier, vol. 19(4), pages 537-551.
    5. Bergantino, Angela Stefania & Madio, Leonardo, 2020. "Intermodal competition and substitution. HSR versus air transport: Understanding the socio-economic determinants of modal choice," Research in Transportation Economics, Elsevier, vol. 79(C).
    6. Marie Delaplace & Sylvie Bazin & christophe Beckerich & Corinne Blanquart, 2011. "High speed Rail service and local economic development, a review," ERSA conference papers ersa10p167, European Regional Science Association.
    7. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    8. Marti-Henneberg, Jordi, 2015. "Attracting travellers to the high-speed train: a methodology for comparing potential demand between stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 145-156.
    9. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    10. Albalate, Daniel & Fageda, Xavier, 2016. "High speed rail and tourism: Empirical evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 174-185.
    11. Zhang, Yanyan & Ma, Wenliang & Yang, Hangjun & Wang, Qiang, 2021. "Impact of high-speed rail on urban residents’ consumption in China—from a spatial perspective," Transport Policy, Elsevier, vol. 106(C), pages 1-10.
    12. Pařil Vilém & Viturka Milan & Rederer Václav, 2023. "The change of commuting behaviour with planned high-speed railways in Czechia," Review of Economic Perspectives, Sciendo, vol. 23(1), pages 1-13, March.
    13. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    14. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    15. Xingji Lu & Jinhua Lu, 2023. "Experimental and Numerical Investigations of the Seismic Performance of Railway Gravity Piers with Low Reinforcement Ratios," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    16. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    17. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.
    18. Daniel Albalate del sol, 2015. "Evaluating HSR availability on Tourism: Evidence from Spanish Provinces and Cities," ERSA conference papers ersa15p288, European Regional Science Association.
    19. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    20. Jasper Willigers, 2003. "High-speed railway developments and corporate location decisions. The role of accessibility," ERSA conference papers ersa03p61, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3057-:d:1191117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.