A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen Wenbai & Liu Chang & Chen Weizhao & Liu Huixiang & Chen Qili & Wu Peiliang & Long Wang, 2021. "A Prediction Method for the RUL of Equipment for Missing Data," Complexity, Hindawi, vol. 2021, pages 1-10, December.
- da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng Wang & Peng Gao & Xuening Chu, 2022. "Remaining Useful Life Prediction of Wind Turbine Gearbox Bearings with Limited Samples Based on Prior Knowledge and PI-LSTM," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
- Guishuang Tian & Shaoping Wang & Jian Shi & Yajing Qiao, 2022. "State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
- Shaojie Ai & Jia Song & Guobiao Cai, 2022. "Sequence-to-Sequence Remaining Useful Life Prediction of the Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel Fusion Transformer Network Solution," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
- Weihua Ou & Jianping Gou & Shaoning Zeng & Lan Du, 2023. "Preface to the Special Issue “Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics”—Special Issue Book," Mathematics, MDPI, vol. 11(4), pages 1-4, February.
- Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
- Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
- Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
- Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Liu, Yang & Zhou, Guangda & Zhao, Shujian & Li, Liang & Xie, Wenhua & Su, Bengan & Li, Yongwei & Zhao, Zhen, 2025. "A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
- Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1022-:d:777237. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.