IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4594-d993070.html
   My bibliography  Save this article

Randomized Average Kaczmarz Algorithm for Tensor Linear Systems

Author

Listed:
  • Wendi Bao

    (College of Science, China University of Petroleum, Qingdao 266580, China)

  • Feiyu Zhang

    (College of Science, China University of Petroleum, Qingdao 266580, China)

  • Weiguo Li

    (College of Science, China University of Petroleum, Qingdao 266580, China)

  • Qin Wang

    (College of Science, China University of Petroleum, Qingdao 266580, China)

  • Ying Gao

    (College of Science, China University of Petroleum, Qingdao 266580, China)

Abstract

For solving tensor linear systems under the tensor–tensor t-product, we propose the randomized average Kaczmarz (TRAK) algorithm, the randomized average Kaczmarz algorithm with random sampling (TRAKS), and their Fourier version, which can be effectively implemented in a distributed environment. We analyzed the relationships (of the updated formulas) between the original algorithms and their Fourier versions in detail and prove that these new algorithms can converge to the unique least F-norm solution of the consistent tensor linear systems. Extensive numerical experiments show that they significantly outperform the tensor-randomized Kaczmarz (TRK) algorithm in terms of both iteration counts and computing times and have potential in real-world data, such as video data, CT data, etc.

Suggested Citation

  • Wendi Bao & Feiyu Zhang & Weiguo Li & Qin Wang & Ying Gao, 2022. "Randomized Average Kaczmarz Algorithm for Tensor Linear Systems," Mathematics, MDPI, vol. 10(23), pages 1-24, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4594-:d:993070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlton, Matthew A., 2008. "Probability and Statistics for Computer Scientists," The American Statistician, American Statistical Association, vol. 62, pages 271-272, August.
    2. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuezhong Wang & Ping Wei & Yimin Wei, 2023. "A Fixed Point Iterative Method for Third-order Tensor Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 334-357, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Liu, 2021. "Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457," Biometrics, The International Biometric Society, vol. 77(4), pages 1498-1500, December.
    2. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    3. Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    4. Kim, Jonathan & Sandri, Brian J. & Rao, Raghavendra B. & Lock, Eric F., 2023. "Bayesian predictive modeling of multi-source multi-way data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    5. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    6. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    7. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    8. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    9. Feiyang Han & Yimin Wei & Pengpeng Xie, 2024. "Regularized and Structured Tensor Total Least Squares Methods with Applications," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1101-1136, September.
    10. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    11. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.
    12. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    13. Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
    14. Florian Gunsilius, 2020. "Distributional synthetic controls," Papers 2001.06118, arXiv.org, revised Dec 2021.
    15. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    16. Lu, Wenqi & Zhu, Zhongyi & Li, Rui & Lian, Heng, 2024. "Statistical performance of quantile tensor regression with convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    17. Pluta, Dustin & Yu, Zhaoxia & Shen, Tong & Chen, Chuansheng & Xue, Gui & Ombao, Hernando, 2018. "Statistical methods and challenges in connectome genetics," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 83-86.
    18. Inkoo Lee & Debajyoti Sinha & Qing Mai & Xin Zhang & Dipankar Bandyopadhyay, 2023. "Bayesian regression analysis of skewed tensor responses," Biometrics, The International Biometric Society, vol. 79(3), pages 1814-1825, September.
    19. Zengchao Xu & Shan Luo & Zehua Chen, 2023. "A Portmanteau Local Feature Discrimination Approach to the Classification with High-dimensional Matrix-variate Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 441-467, February.
    20. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4594-:d:993070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.