IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i3d10.1007_s00362-025-01684-z.html
   My bibliography  Save this article

Global Fréchet regression from time correlated bivariate curve data in manifolds

Author

Listed:
  • A. Torres-Signes

    (University of Málaga)

  • M. P. Frías

    (University of Jaén)

  • M. D. Ruiz-Medina

    (University of Granada)

Abstract

Global Fréchet regression is addressed from the observation of a strictly stationary bivariate curve process, evaluated in a finite-dimensional compact differentiable Riemannian manifold with bounded positive smooth sectional curvature. The involved univariate curve processes respectively define the functional response and regressor, having the same Fréchet functional mean. The supports of the marginal probability measures of the regressor and response processes are assumed to be contained in a ball, whose radius ensures the injectivity of the exponential map. This map has a time-varying origin at the common marginal Fréchet functional mean. A weighted Fréchet mean approach is adopted in the definition of the theoretical loss function. The regularized Fréchet weights are computed in the time-varying tangent space from the log-mapped regressors. Under these assumptions, and some Lipschitz regularity sample path conditions, when a unique minimizer exists, the uniform weak-consistency of the empirical Fréchet curve predictor is obtained, under mean-square ergodicity of the log-mapped regressor process in the first two moments. A simulated example in the sphere illustrates the finite sample size performance of the proposed Fréchet predictor. Predictions in time of the spherical coordinates of the magnetic field vector are obtained from the time-varying geocentric latitude and longitude of the satellite NASA’s MAGSAT spacecraft in the real-data example analyzed.

Suggested Citation

  • A. Torres-Signes & M. P. Frías & M. D. Ruiz-Medina, 2025. "Global Fréchet regression from time correlated bivariate curve data in manifolds," Statistical Papers, Springer, vol. 66(3), pages 1-35, April.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:3:d:10.1007_s00362-025-01684-z
    DOI: 10.1007/s00362-025-01684-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01684-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01684-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    2. Ruiz-Medina, María D. & Álvarez-Liébana, Javier, 2019. "Strongly consistent autoregressive predictors in abstract Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 186-201.
    3. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    4. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.
    5. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2014. "Nonparametric Regression for Spherical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 748-763, June.
    6. Zhu, Hongtu & Chen, Yasheng & Ibrahim, Joseph G. & Li, Yimei & Hall, Colin & Lin, Weili, 2009. "Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1203-1212.
    7. Pigoli, Davide & Menafoglio, Alessandra & Secchi, Piercesare, 2016. "Kriging prediction for manifold-valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 117-131.
    8. Lazar, Drew & Lin, Lizhen, 2017. "Scale and curvature effects in principal geodesic analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 64-82.
    9. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    10. Dimeglio, Chloé & Gallón, Santiago & Loubes, Jean-Michel & Maza, Elie, 2014. "A robust algorithm for template curve estimation based on manifold embedding," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 373-386.
    11. Jupp, Peter E. & Kim, Peter T. & Koo, Ja-Yong & Wiegert, Paul, 2003. "The Intrinsic Distribution and Selection Bias of Long-Period Cometary Orbits," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 515-521, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Fraiman, Ricardo & Gamboa, Fabrice & Moreno, Leonardo, 2019. "Connecting pairwise geodesic spheres by depth: DCOPS," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 81-94.
    4. Xiumin Liu & Lu Niu & Junlong Zhao, 2023. "Statistical inference on the significance of rows and columns for matrix-valued data in an additive model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 785-828, September.
    5. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    6. Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    7. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    8. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    9. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    10. Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
    11. Feiyang Han & Yimin Wei & Pengpeng Xie, 2024. "Regularized and Structured Tensor Total Least Squares Methods with Applications," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1101-1136, September.
    12. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    13. Yuexuan Wu & Chao Huang & Anuj Srivastava, 2024. "Shape-based functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 1-47, March.
    14. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    15. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    16. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    17. Bo Wei & Limin Peng & Ying Guo & Amita Manatunga & Jennifer Stevens, 2023. "Tensor response quantile regression with neuroimaging data," Biometrics, The International Biometric Society, vol. 79(3), pages 1947-1958, September.
    18. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    19. Krebs, Johannes & Rademacher, Daniel & von Sachs, Rainer, 2022. "Statistical inference for intrinsic wavelet estimators of SPD covariance matrices in a log-Euclidean manifold," LIDAM Discussion Papers ISBA 2022004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Bailly, Gabriel & von Sachs, Rainer, 2024. "Time-Varying Covariance Matrices Estimation by Nonlinear Wavelet Thresholding in a Log-Euclidean Riemannian Manifold," LIDAM Discussion Papers ISBA 2024004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:3:d:10.1007_s00362-025-01684-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.