IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3843-d945011.html
   My bibliography  Save this article

Mathematical Modelling and Simulation of Second Life Battery Pack with Heterogeneous State of Health

Author

Listed:
  • Farhad Salek

    (Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Aydin Azizi

    (Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Shahaboddin Resalati

    (Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Paul Henshall

    (Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Denise Morrey

    (Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

Abstract

The service life of Lithium-ion batteries disposed from electric vehicles, with an approximate remaining capacity of 75–80%, can be prolonged with their adoption in less demanding second life applications such as buildings. A photovoltaic energy generation system integrated with a second life battery energy storage device is modelled mathematically to assess the design’s technical characteristics. The reviewed studies in the literature assume, during the modelling process, that the second life battery packs are homogeneous in terms of their initial state of health and do not consider the module-to-module variations associated with the state of health differences. This study, therefore, conducts mathematical modelling of second life battery packs with homogenous and heterogeneous state of health in module level using second-order equivalent circuit model (ECM). The developed second-order ECM is validated against experimental data performed in the lab on 3Ah NCM batteries. The degradation parameters are also investigated using the battery cell’s first life degradation data and exponential triple smoothing (ETS) algorithm. The second-order ECM is integrated with the energy generation system to evaluate and compare the performance of the homogenous and heterogeneous battery packs during the year. Results of this study revealed that in heterogeneous packs, a lower electrical current and higher SOC is observed in modules with lower state of health due to their higher ohmic resistance and lower capacity, compared to the other modules for the specific battery pack configuration used in this study. The methodology presented in this study can be used for mathematical modelling of second life battery packs with heterogenous state of health of cells and modules, the simulation results of which can be employed for obtaining the optimum energy management strategy in battery management systems.

Suggested Citation

  • Farhad Salek & Aydin Azizi & Shahaboddin Resalati & Paul Henshall & Denise Morrey, 2022. "Mathematical Modelling and Simulation of Second Life Battery Pack with Heterogeneous State of Health," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3843-:d:945011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    2. Munankarmi, Prateek & Maguire, Jeff & Balamurugan, Sivasathya Pradha & Blonsky, Michael & Roberts, David & Jin, Xin, 2021. "Community-scale interaction of energy efficiency and demand flexibility in residential buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    4. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Florina Scarlatache & Mihai Gavrilas, 2021. "A Metaheuristic Algorithm for Flexible Energy Storage Management in Residential Electricity Distribution Grids," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    5. Boccalatte, Alessia & Fossa, Marco & Ménézo, Christophe, 2022. "Calculation of the incidence angle modifier of a Linear Fresnel Collector: The proposed declination and zenith angle model compared to the biaxial factored approach," Renewable Energy, Elsevier, vol. 185(C), pages 123-138.
    6. Mahmoud A. Mossa & Olfa Gam & Nicola Bianchi, 2022. "Dynamic Performance Enhancement of a Renewable Energy System for Grid Connection and Stand-Alone Operation with Battery Storage," Energies, MDPI, vol. 15(3), pages 1-42, January.
    7. Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
    8. Mariam Gómez Sánchez & Yunesky Masip Macia & Alejandro Fernández Gil & Carlos Castro & Suleivys M. Nuñez González & Jacqueline Pedrera Yanes, 2020. "A Mathematical Model for the Optimization of Renewable Energy Systems," Mathematics, MDPI, vol. 9(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binghong Han & Jonathon R. Harding & Johanna K. S. Goodman & Zhuhua Cai & Quinn C. Horn, 2022. "End-of-Charge Temperature Rise and State-of-Health Evaluation of Aged Lithium-Ion Battery," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    3. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.
    5. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    6. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    7. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    8. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    9. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    10. Francesco Lo Franco & Antonio Morandi & Pietro Raboni & Gabriele Grandi, 2021. "Efficiency Comparison of DC and AC Coupling Solutions for Large-Scale PV+BESS Power Plants," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    13. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    14. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    15. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    16. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).
    17. Sai Vinayak Ganesh & Matilde D’Arpino, 2023. "Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications," Energies, MDPI, vol. 16(7), pages 1-23, March.
    18. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    19. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    20. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3843-:d:945011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.