IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3189-d906222.html
   My bibliography  Save this article

Maximum-Profit Inventory Model with Generalized Deterioration Rate

Author

Listed:
  • Yu-Lan Wang

    (College of Teacher Education, Weifang University of Science and Technical, Weifang 262799, China)

  • Ming-Li Chen

    (School of Intelligent Manufacturing, Weifang University of Science and Technical, Weifang 262799, China)

  • Peterson Julian

    (School of General Studies, Weifang University of Science and Technical, Weifang 262799, China)

Abstract

We developed a maximum profit inventory model with a generalized deterioration rate where the selling rate is dependent on the inventory level that is an extension of two published papers. A complete solution structure is provided to decide the optimal solution with reasonable conditions supported by numerical examples, and then we prove that the optimal solution is independent of the demand pattern. Numerical examples are provided to illustrate our findings. In a previously published paper, three examples had symmetric conditions to decide the local maximum solution. Our approach provides a reasonable explanation for this symmetric phenomenon. Our findings will help researchers develop new inventory models in the future.

Suggested Citation

  • Yu-Lan Wang & Ming-Li Chen & Peterson Julian, 2022. "Maximum-Profit Inventory Model with Generalized Deterioration Rate," Mathematics, MDPI, vol. 10(17), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3189-:d:906222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiwari, Sunil & Cárdenas-Barrón, Leopoldo Eduardo & Goh, Mark & Shaikh, Ali Akbar, 2018. "Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain," International Journal of Production Economics, Elsevier, vol. 200(C), pages 16-36.
    2. Hung, Kuo-Chen, 2011. "An inventory model with generalized type demand, deterioration and backorder rates," European Journal of Operational Research, Elsevier, vol. 208(3), pages 239-242, February.
    3. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    4. Manna, S.K. & Chaudhuri, K.S., 2006. "An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages," European Journal of Operational Research, Elsevier, vol. 171(2), pages 557-566, June.
    5. Lin, Shih-Wei, 2011. "Inventory models with managerial policy independent of demand," European Journal of Operational Research, Elsevier, vol. 211(3), pages 520-524, June.
    6. Alım, Muzaffer & Beullens, Patrick, 2020. "Joint inventory and distribution strategy for online sales with a flexible delivery option," International Journal of Production Economics, Elsevier, vol. 222(C).
    7. Deng, Peter Shaohua & Lin, Robert H.-J. & Chu, Peter, 2007. "A note on the inventory models for deteriorating items with ramp type demand rate," European Journal of Operational Research, Elsevier, vol. 178(1), pages 112-120, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    2. Sudip Adak & G. S. Mahapatra, 2022. "Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration," Annals of Operations Research, Springer, vol. 315(2), pages 1551-1571, August.
    3. Lin, Shih-Wei, 2011. "Inventory models with managerial policy independent of demand," European Journal of Operational Research, Elsevier, vol. 211(3), pages 520-524, June.
    4. Hung, Kuo-Chen, 2011. "An inventory model with generalized type demand, deterioration and backorder rates," European Journal of Operational Research, Elsevier, vol. 208(3), pages 239-242, February.
    5. K. Skouri & I. Konstantaras & S. Manna & K. Chaudhuri, 2011. "Inventory models with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages," Annals of Operations Research, Springer, vol. 191(1), pages 73-95, November.
    6. Yue Xie & Allen H. Tai & Wai-Ki Ching & Yong-Hong Kuo & Na Song, 2021. "Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate," Annals of Operations Research, Springer, vol. 300(1), pages 225-265, May.
    7. Manish Shukla & Sanjay Jharkharia, 2014. "An inventory model for continuously deteriorating agri-fresh produce: an artificial immune system-based solution approach," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 9(1/2), pages 110-135.
    8. Saha, Subrata & Sarkar, Biswajit & Sarkar, Mitali, 2023. "Application of improved meta-heuristic algorithms for green preservation technology management to optimize dynamical investments and replenishment strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 426-450.
    9. Bikash Koli Dey & Hyesung Seok, 2024. "Intelligent inventory management with autonomation and service strategy," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 307-330, January.
    10. Saha, Subrata & Chatterjee, Debajyoti & Sarkar, Biswajit, 2021. "The ramification of dynamic investment on the promotion and preservation technology for inventory management through a modified flower pollination algorithm," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    11. P. Majumder & U. K. Bera & M. Maiti, 2020. "An EPQ model of substitutable products under trade credit policy with stock dependent and random substitution," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1205-1243, December.
    12. Shi, Yan & Zhang, Zhiyong & Tiwari, Sunil & Yang, Lei, 2023. "Pricing and replenishment strategy for a perishable product under various payment schemes and cap-and-trade regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    13. Ali Salmasnia & Ali Talesh-Kazemi, 2022. "Integrating inventory planning, pricing and maintenance for perishable products in a two-component parallel manufacturing system with common cause failures," Operational Research, Springer, vol. 22(2), pages 1235-1265, April.
    14. Majumder, P. & Bera, U.K. & Maiti, M., 2016. "An EPQ model for two-warehouse in unremitting release pattern with two-level trade credit period concerning both supplier and retailer," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 430-458.
    15. Al-Amin Khan, Md. & Shaikh, Ali Akbar & Konstantaras, Ioannis & Bhunia, Asoke Kumar & Cárdenas-Barrón, Leopoldo Eduardo, 2020. "Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price," International Journal of Production Economics, Elsevier, vol. 230(C).
    16. Kun-Jen Chung & Jui-Jung Liao & Shy-Der Lin & Sheng-Tu Chuang & Hari Mohan Srivastava, 2019. "The Inventory Model for Deteriorating Items under Conditions Involving Cash Discount and Trade Credit," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    17. Biswajit Sarkar & Sharmila Saren & Leopoldo Cárdenas-Barrón, 2015. "An inventory model with trade-credit policy and variable deterioration for fixed lifetime products," Annals of Operations Research, Springer, vol. 229(1), pages 677-702, June.
    18. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    19. Sarkar, Mitali & Sarkar, Biswajit, 2013. "An economic manufacturing quantity model with probabilistic deterioration in a production system," Economic Modelling, Elsevier, vol. 31(C), pages 245-252.
    20. Skouri, K. & Konstantaras, I. & Papachristos, S. & Ganas, I., 2009. "Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate," European Journal of Operational Research, Elsevier, vol. 192(1), pages 79-92, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3189-:d:906222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.