IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2371-d856918.html
   My bibliography  Save this article

Social Sustainability and Resilience in Supply Chains of Latin America on COVID-19 Times: Classification Using Evolutionary Fuzzy Knowledge

Author

Listed:
  • Miguel Reyna-Castillo

    (Faculty of Law and Social Sciences, Centro Universitario Tampico-Madero, Autonomous University of Tamaulipas, Tampico 89339, Mexico
    Área de Negocios y Humanidades, Universidad del Noreste, Prolongación Av. Hidalgo 6315, Col. Nuevo Aeropuerto, Tampico 89337, Mexico)

  • Alejandro Santiago

    (Faculty of Engineering “Arturo Narro Siller”, Centro Universitario Tampico-Madero, Autonomous University of Tamaulipas, Tampico 89339, Mexico)

  • Salvador Ibarra Martínez

    (Faculty of Engineering “Arturo Narro Siller”, Centro Universitario Tampico-Madero, Autonomous University of Tamaulipas, Tampico 89339, Mexico)

  • José Antonio Castán Rocha

    (Faculty of Engineering “Arturo Narro Siller”, Centro Universitario Tampico-Madero, Autonomous University of Tamaulipas, Tampico 89339, Mexico)

Abstract

The number of research papers interested in studying the social dimension of supply chain sustainability and resilience is increasing in the literature. However, the social dimension is complex, with several uncertainty variables that cannot be expressed with a traditional Boolean logic of totally true or false. To cope with uncertainty, Fuzzy Logic allows the development of models to obtain crisp values from the concept of fuzzy linguistic variables. Using the Structural Equation Model by Partial Least Squares (SEM-PLS) and Evolutionary Fuzzy Knowledge, this research aims to analyze the predictive power of social sustainability characteristics on supply chain resilience performance in the context of the COVID-19 pandemic with representative cases from Mexico and Chile. We validate our approach using the Chile database for training our model and the Mexico database for testing. The fuzzy knowledge database has a predictive power of more than 80%, using social sustainability features as inputs regarding supply chain resilience in the context of the COVID-19 pandemic disruption. To our knowledge, no works in the literature use fuzzy evolutionary knowledge to study social sustainability in correlation with resilience. Moreover, our proposed approach is the only one that does not require a priori expert knowledge or a systematic mathematical setup.

Suggested Citation

  • Miguel Reyna-Castillo & Alejandro Santiago & Salvador Ibarra Martínez & José Antonio Castán Rocha, 2022. "Social Sustainability and Resilience in Supply Chains of Latin America on COVID-19 Times: Classification Using Evolutionary Fuzzy Knowledge," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2371-:d:856918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Trautrims & Martin C. Schleper & M. Selim Cakir & Stefan Gold, 2020. "Survival at the expense of the weakest? Managing modern slavery risks in supply chains during COVID-19," Journal of Risk Research, Taylor & Francis Journals, vol. 23(7-8), pages 1067-1072, August.
    2. Lina He & Zhenyong Wu & Wei Xiang & Mark Goh & Zhitao Xu & Wenyan Song & Xinguo Ming & Xiao Wu, 2021. "A novel Kano-QFD-DEMATEL approach to optimise the risk resilience solution for sustainable supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1714-1735, March.
    3. Dmitry Ivanov, 2018. "Revealing interfaces of supply chain resilience and sustainability: a simulation study," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3507-3523, May.
    4. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    5. Hooks, Teresa & Macken-Walsh, Áine & McCarthy, Olive & Power, Carol, 2017. "Farm-level viability, sustainability and resilience: a focus on co-operative action and values-based supply chains," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 119(3), December.
    6. Komeyl Baghizadeh & Julia Pahl & Guiping Hu, 2021. "Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, September.
    7. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    8. Zeplin Jiwa Husada Tarigan & Hotlan Siagian & Ferry Jie, 2021. "Impact of Internal Integration, Supply Chain Partnership, Supply Chain Agility, and Supply Chain Resilience on Sustainable Advantage," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    9. Jayani Ishara Sudusinghe & Stefan Seuring, 2020. "Social Sustainability Empowering the Economic Sustainability in the Global Apparel Supply Chain," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    10. György Károlyi & Anna I. Pózna & Katalin M. Hangos & Attila Magyar, 2022. "An Optimized Fuzzy Controlled Charging System for Lithium-Ion Batteries Using a Genetic Algorithm," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junuo Zhou & Lin Yang, 2022. "Network-Based Research on Organizational Resilience in Wuhan Thunder God Mountain Hospital Project during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    2. Di Liang & Ran Bhamra & Zhongyi Liu & Yucheng Pan, 2022. "Risk Propagation and Supply Chain Health Control Based on the SIR Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Hung Hsu & Ming-Ge Li & Ting-Yi Zhang & An-Yuan Chang & Shu-Zhen Shangguan & Wan-Ling Liu, 2022. "Deploying Big Data Enablers to Strengthen Supply Chain Resilience to Mitigate Sustainable Risks Based on Integrated HOQ-MCDM Framework," Mathematics, MDPI, vol. 10(8), pages 1-35, April.
    2. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    3. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. El-Awady Attia & Ali Alarjani & Md. Sharif Uddin & Ahmed Farouk Kineber, 2023. "Determining the Stationary Enablers of Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    5. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    6. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    7. Zahra Homayouni & Mir Saman Pishvaee & Hamed Jahani & Dmitry Ivanov, 2023. "A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 395-435, May.
    8. Agarwal, Vernika & Mathiyazhagan, K. & Malhotra, Snigdha & Pimpunchat, Busayamas, 2023. "Building resilience for sustainability of MSMEs post COVID-19 outbreak: An Indian handicraft industry outlook," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Neungho Han & Juneho Um, 2024. "Risk management strategy for supply chain sustainability and resilience capability," Risk Management, Palgrave Macmillan, vol. 26(2), pages 1-26, May.
    10. Ana Carolina Silva & Catarina Moreira Marques & Jorge Pinho de Sousa, 2023. "A Simulation Approach for the Design of More Sustainable and Resilient Supply Chains in the Pharmaceutical Industry," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    11. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    12. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    13. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    14. Hooks Teresa & Macken-Walsh Áine & McCarthy Olive & Power Carol & Henchion Maeve, 2018. "Co-Operation among Irish Beef Farmers: Current Perspectives and Future Prospects in the Context of New Producer Organisation (PO) Legislation," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    15. Seeram Ramakrishna & Wayne Hu & Rajan Jose, 2023. "Sustainability in Numbers by Data Analytics," Circular Economy and Sustainability,, Springer.
    16. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Basu R, Jothi & Abdulrahman, Muhammad D. & Yuvaraj, M., 2023. "Improving agility and resilience of automotive spares supply chain: The additive manufacturing enabled truck model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    18. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    19. Kunz, Nathan & Chesney, Thomas & Trautrims, Alexander & Gold, Stefan, 2023. "Adoption and transferability of joint interventions to fight modern slavery in food supply chains," International Journal of Production Economics, Elsevier, vol. 258(C).
    20. Yi Zheng & Li Liu & Victor Shi & Wenxing Huang & Jianxiu Liao, 2022. "A Resilience Analysis of a Medical Mask Supply Chain during the COVID-19 Pandemic: A Simulation Modeling Approach," IJERPH, MDPI, vol. 19(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2371-:d:856918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.