IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9951220.html
   My bibliography  Save this article

Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application

Author

Listed:
  • Komeyl Baghizadeh
  • Julia Pahl
  • Guiping Hu

Abstract

In this study, we present a multiobjective mixed-integer nonlinear programming (MINLP) model to design a closed-loop supply chain (CLSC) from production stage to distribution as well as recycling for reproduction. The given network includes production centers, potential points for establishing of distribution centers, retrieval centers, collecting and recycling centers, and the demand points. The presented model seeks to find optimal locations for distribution centers, second-hand product collection centers, and recycling centers under the uncertainty situation alongside the factory’s fixed points. The purpose of the presented model is to minimize overall network costs including processing, establishing, and transportation of products and return flows as well as environmental impacts while maximizing social scales and network flexibility according to the presence of uncertainty parameters in the problem. To solve the proposed model with fuzzy uncertainty, first, the improved epsilon ( ε )-constraints approach is used to transform a multiobjective to a single-objective problem. Afterward, the Lagrangian relaxation approach is applied to effectively solve the problem. A real-world case study is used to evaluate the performance of the proposed model. Finally, sensitivity analysis is performed to study the effects of important parameters on the optimal solution.

Suggested Citation

  • Komeyl Baghizadeh & Julia Pahl & Guiping Hu, 2021. "Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, September.
  • Handle: RePEc:hin:jnlmpe:9951220
    DOI: 10.1155/2021/9951220
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9951220.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9951220.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9951220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komeyl Baghizadeh & Nafiseh Ebadi & Dominik Zimon & Luay Jum’a, 2022. "Using Four Metaheuristic Algorithms to Reduce Supplier Disruption Risk in a Mathematical Inventory Model for Supplying Spare Parts," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    2. Yang Hu, 2023. "Perspectives in closed-loop supply chains network design considering risk and uncertainty factors," Papers 2306.04819, arXiv.org.
    3. Ihnat Ruksha & Andrzej Karbowski, 2022. "Decomposition Methods for the Network Optimization Problem of Simultaneous Routing and Bandwidth Allocation Based on Lagrangian Relaxation," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Prajapati, Dhirendra & Pratap, Saurabh & Zhang, Mengdi & Lakshay, & Huang, George Q., 2022. "Sustainable forward-reverse logistics for multi-product delivery and pickup in B2C E-commerce towards the circular economy," International Journal of Production Economics, Elsevier, vol. 253(C).
    5. Miguel Reyna-Castillo & Alejandro Santiago & Salvador Ibarra Martínez & José Antonio Castán Rocha, 2022. "Social Sustainability and Resilience in Supply Chains of Latin America on COVID-19 Times: Classification Using Evolutionary Fuzzy Knowledge," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    6. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9951220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.