IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2176-d845099.html
   My bibliography  Save this article

A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios

Author

Listed:
  • Gang Xuan

    (School of Administration Business, Zhejiang University of Finance and Economics Dongfang College, Haining 314408, China)

  • Win-Chin Lin

    (Department of Statistics, Feng Chia University, Taichung City 40724, Taiwan)

  • Shuenn-Ren Cheng

    (Department of E-Sport Technology Management, Cheng Shiu University, Kaohsiung City 83347, Taiwan)

  • Wei-Lun Shen

    (Department of Statistics, Feng Chia University, Taichung City 40724, Taiwan)

  • Po-An Pan

    (Department of Statistics, Feng Chia University, Taichung City 40724, Taiwan)

  • Chih-Ling Kuo

    (Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung City 83347, Taiwan)

  • Chin-Chia Wu

    (Department of Statistics, Feng Chia University, Taichung City 40724, Taiwan)

Abstract

In many real-world environments, machine breakdowns or worker performance instabilities cause uncertainty in job processing times, while working environment changes or transportation delays will postpone finished production for customers. The factors that impact the task processing times and/or deadlines vary. In view of the uncertainty, job processing times and/or job due dates cannot be fixed numbers. Inspired by this fact, we introduce a scenario-dependent processing time and due date concept into a single-machine environment. The measurement minimizes the total job tardiness in the worst case. The same problem without the presence of processing time uncertainty has been an NP-hard problem. First, to solve this difficult model, an exact method, including a lower bound and some dominance properties, is proposed. Next, three scenario-dependent heuristic algorithms are proposed. Additionally, a population-based iterated greedy algorithm is proposed in the hope of increasing the diversity of the solutions. The results of all related algorithms are determined and compared using the appropriate statistical tools.

Suggested Citation

  • Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2176-:d:845099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    2. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    3. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
    4. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    5. HazIr, Öncü & Haouari, Mohamed & Erel, Erdal, 2010. "Robust scheduling and robustness measures for the discrete time/cost trade-off problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 633-643, December.
    6. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
    7. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    8. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    9. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    10. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner, 2016. "Schedule robustness analysis with the help of attainable sets in continuous flow problem under capacity disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3397-3413, June.
    2. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    3. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    4. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    5. Xiong, Jian & Xing, Li-ning & Chen, Ying-wu, 2013. "Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns," International Journal of Production Economics, Elsevier, vol. 141(1), pages 112-126.
    6. Shichang Xiao & Zigao Wu & Hongyan Dui, 2022. "Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    7. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    8. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    9. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    10. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    11. M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
    12. Yuri N. Sotskov & Natalja G. Egorova, 2019. "The Optimality Region for a Single-Machine Scheduling Problem with Bounded Durations of the Jobs and the Total Completion Time Objective," Mathematics, MDPI, vol. 7(5), pages 1-21, April.
    13. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    14. Shichang Xiao & Shudong Sun & Jionghua (Judy) Jin, 2017. "Surrogate Measures for the Robust Scheduling of Stochastic Job Shop Scheduling Problems," Energies, MDPI, vol. 10(4), pages 1-26, April.
    15. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
    16. Subhash C. Sarin & Balaji Nagarajan & Sanjay Jain & Lingrui Liao, 2009. "Analytic evaluation of the expectation and variance of different performance measures of a schedule on a single machine under processing time variability," Journal of Combinatorial Optimization, Springer, vol. 17(4), pages 400-416, May.
    17. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    18. Kasperski, Adam & Kurpisz, Adam & Zieliński, Paweł, 2012. "Approximating a two-machine flow shop scheduling under discrete scenario uncertainty," European Journal of Operational Research, Elsevier, vol. 217(1), pages 36-43.
    19. Herr, Oliver & Goel, Asvin, 2016. "Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints," European Journal of Operational Research, Elsevier, vol. 248(1), pages 123-135.
    20. Mina Roohnavazfar & Daniele Manerba & Lohic Fotio Tiotsop & Seyed Hamid Reza Pasandideh & Roberto Tadei, 2021. "Stochastic single machine scheduling problem as a multi-stage dynamic random decision process," Computational Management Science, Springer, vol. 18(3), pages 267-297, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2176-:d:845099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.