IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v28y2025i3d10.1007_s10951-024-00828-7.html
   My bibliography  Save this article

Recoverable robust single machine scheduling with polyhedral uncertainty

Author

Listed:
  • Matthew Bold

    (Lancaster University)

  • Marc Goerigk

    (University of Passau)

Abstract

This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to $$\Delta $$ Δ disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.

Suggested Citation

  • Matthew Bold & Marc Goerigk, 2025. "Recoverable robust single machine scheduling with polyhedral uncertainty," Journal of Scheduling, Springer, vol. 28(3), pages 269-287, June.
  • Handle: RePEc:spr:jsched:v:28:y:2025:i:3:d:10.1007_s10951-024-00828-7
    DOI: 10.1007/s10951-024-00828-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00828-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00828-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    2. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. M. L. Balinski, 1965. "Integer Programming: Methods, Uses, Computations," Management Science, INFORMS, vol. 12(3), pages 253-313, November.
    5. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    6. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    7. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    8. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    9. Fridman, Ilia & Pesch, Erwin & Shafransky, Yakov, 2020. "Minimizing maximum cost for a single machine under uncertainty of processing times," European Journal of Operational Research, Elsevier, vol. 286(2), pages 444-457.
    10. Adam Kasperski & Paweł Zieliński, 2016. "Robust Single Machine Scheduling Problem with Weighted Number of Late Jobs Criterion," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 279-284, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    2. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    3. Lei Liu & Marcello Urgo, 2024. "Robust scheduling in a two-machine re-entrant flow shop to minimise the value-at-risk of the makespan: branch-and-bound and heuristic algorithms based on Markovian activity networks and phase-type dis," Annals of Operations Research, Springer, vol. 338(1), pages 741-764, July.
    4. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    5. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    6. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    7. François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
    8. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    9. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    10. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
    11. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    12. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    13. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    14. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    15. Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    16. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    17. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    18. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    19. Buchheim, Christoph & Pruente, Jonas, 2019. "K-adaptability in stochastic combinatorial optimization under objective uncertainty," European Journal of Operational Research, Elsevier, vol. 277(3), pages 953-963.
    20. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:28:y:2025:i:3:d:10.1007_s10951-024-00828-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.