IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i2p46-d1620661.html
   My bibliography  Save this article

Using Entropy Metrics to Analyze Information Processing Within Production Systems: The Role of Organizational Constraints

Author

Listed:
  • Frits van Merode

    (Care and Public Health Research Institute (CAPHRI), Maastricht University, 6200 MD Maastricht, The Netherlands
    Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands)

  • Henri Boersma

    (Care and Public Health Research Institute (CAPHRI), Maastricht University, 6200 MD Maastricht, The Netherlands
    Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands)

  • Fleur Tournois

    (Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, Maastricht University, 6229 HX Maastricht, The Netherlands)

  • Windi Winasti

    (Elisabeth-TweeSteden Ziekenhuis, 5022 GC Tilburg, The Netherlands)

  • Nelson Aloysio Reis de Almeida Passos

    (Department of Computer Science, University of Pisa, 56126 Pisa, Italy
    Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy)

  • Annelies van der Ham

    (Care and Public Health Research Institute (CAPHRI), Maastricht University, 6200 MD Maastricht, The Netherlands
    Rhythm, 1014 AX Amsterdam, The Netherlands)

Abstract

Background : The literature on measuring the complexity of production systems employs the graph and information theory. This study analyzes these systems and their coordination under varying states of control, with a focus on the probability of unfavorable events and their temporal characteristics. Methods : Coordination systems are represented as temporal networks, using entropy and node influence metrics. Two case studies are presented: a factory operating under the principles of the Toyota Production System (TPS) with adjacent (local) coordination and andon (global) coordination and a university obstetrics clinic with only adjacent (local) coordination. Results : Adjacent coordination leads to zero entropy in 38.40% of all situations in the TPS example, contrasted to 76.62% in the same system with andon coordination. Degree centrality of nodes outside of zero-entropy situations exhibits higher average and maximum values in andon coordination networks, compared to those with adjacent coordination in TPS. Entropy values in the university obstetric clinic range from 0.92 to 2.23, average degrees vary between 3 and 4.08, and maximum degrees range from 7 to 9. Conclusions : Coordination systems modeled as temporal networks capture the evolving nature of centralizing and decentralizing coordination in production systems.

Suggested Citation

  • Frits van Merode & Henri Boersma & Fleur Tournois & Windi Winasti & Nelson Aloysio Reis de Almeida Passos & Annelies van der Ham, 2025. "Using Entropy Metrics to Analyze Information Processing Within Production Systems: The Role of Organizational Constraints," Logistics, MDPI, vol. 9(2), pages 1-24, March.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:46-:d:1620661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/2/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/2/46/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Satyendra Kumar Sharma & Praveen Ranjan Srivastava & Ajay Kumar & Anil Jindal & Shivam Gupta, 2023. "Supply chain vulnerability assessment for manufacturing industry," Annals of Operations Research, Springer, vol. 326(2), pages 653-683, July.
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    3. Dmitry Ivanov, 2024. "Two views of supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 62(11), pages 4031-4045, June.
    4. Tobias Mönch & Arnd Huchzermeier & Peter Bebersdorf, 2021. "Variable takt times in mixed-model assembly line balancing with random customisation," International Journal of Production Research, Taylor & Francis Journals, vol. 59(15), pages 4670-4689, August.
    5. Nye, David E., 2013. "America's Assembly Line," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262018715, December.
    6. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    7. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2021. "Consistency matters: Revisiting the structural complexity for supply chain networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosayebi, Mohsen & Fathi, Michel & Hedayati, Mehrnaz Khalaj & Ivanov, Dmitry, 2024. "Time-to-Adapt (TTA)," International Journal of Production Economics, Elsevier, vol. 278(C).
    2. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    3. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    4. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    6. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    10. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    12. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    14. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    18. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Chervenkova, Tanya & Ivanov, Dmitry, 2023. "Adaptation strategies for building supply chain viability: A case study analysis of the global automotive industry re-purposing during the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:46-:d:1620661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.