IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v5y2021i4p87-d696724.html
   My bibliography  Save this article

Intra- and Interorganizational Barriers to Blockchain Adoption: A General Assessment and Coping Strategies in the Agrifood Industry

Author

Listed:
  • Horst Treiblmaier

    (Department of International Management, Modul University Vienna, 1190 Vienna, Austria)

  • Abderahman Rejeb

    (Doctoral School of Regional Sciences and Business Administration‚ Széchenyi István University‚ 9026 Győr, Hungary)

  • Remko van Hoek

    (Sam M. Walton College of Business, University of Arkansas, Fayetteville, AR 72701, USA)

  • Mary Lacity

    (Sam M. Walton College of Business, University of Arkansas, Fayetteville, AR 72701, USA)

Abstract

Background : Companies partaking in modern supply chains face numerous intra- and interorganizational barriers when it comes to the adoption of blockchain technology. Empirical research is missing that explores how exactly these barriers can be overcome. In this paper we first explore barriers that organizations need to overcome to successfully deploy blockchain technology. In a second step, we investigate the agrifood industry and highlight differences in coping strategies between incumbents and start-ups. Methods : We conducted a quantitative survey with 190 supply chain experts to identify barriers and an in-depth qualitative study that included 10 expert interviews to better understand the current situation in agrifood organizations. Results : The findings from the quantitative study show that the most relevant organizational barrier to blockchain adoption is the widespread lack of understanding of the technology and its potential benefits. In the qualitative study we illustrate how various intra- and interorganizational barriers can be overcome and how the resources and capabilities differ between incumbents and start-ups. Conclusions : Our results provide academics with a better understanding of the relevant barriers and bridges of blockchain adoption. Practitioners benefit from learning about the resources and capabilities they need to deploy in order to benefit from blockchain technology.

Suggested Citation

  • Horst Treiblmaier & Abderahman Rejeb & Remko van Hoek & Mary Lacity, 2021. "Intra- and Interorganizational Barriers to Blockchain Adoption: A General Assessment and Coping Strategies in the Agrifood Industry," Logistics, MDPI, vol. 5(4), pages 1-20, December.
  • Handle: RePEc:gam:jlogis:v:5:y:2021:i:4:p:87-:d:696724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/5/4/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/5/4/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sachin Kamble & Angappa Gunasekaran & Himanshu Arha, 2019. "Understanding the Blockchain technology adoption in supply chains-Indian context," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2009-2033, April.
    2. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    3. Geneci da Silva Ribeiro Rocha & Letícia de Oliveira & Edson Talamini, 2021. "Blockchain Applications in Agribusiness: A Systematic Review," Future Internet, MDPI, vol. 13(4), pages 1-16, April.
    4. Verónica León‐Bravo & Antonella Moretto & Raffaella Cagliano & Federico Caniato, 2019. "Innovation for sustainable development in the food industry: Retro and forward‐looking innovation approaches to improve quality and healthiness," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(5), pages 1049-1062, September.
    5. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Natarajan Balasubramanian, 2011. "New Plant Venture Performance Differences Among Incumbent, Diversifying, and Entrepreneurial Firms: The Impact of Industry Learning Intensity," Management Science, INFORMS, vol. 57(3), pages 549-565, March.
    7. Abderahman Rejeb & John G. Keogh & Suhaiza Zailani & Horst Treiblmaier & Karim Rejeb, 2020. "Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions," Logistics, MDPI, vol. 4(4), pages 1-26, October.
    8. Chunguang Bai & Joseph Sarkis, 2020. "A supply chain transparency and sustainability technology appraisal model for blockchain technology," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2142-2162, April.
    9. Horst Treiblmaier, 2019. "Combining Blockchain Technology and the Physical Internet to Achieve Triple Bottom Line Sustainability: A Comprehensive Research Agenda for Modern Logistics and Supply Chain Management," Logistics, MDPI, vol. 3(1), pages 1-13, February.
    10. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Amit Karamchandani & Samir K. Srivastava & Sushil Kumar & Akhil Srivastava, 2021. "Analysing perceived role of blockchain technology in SCM context for the manufacturing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3398-3429, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    2. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    3. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    4. Aditi S. Saha & Rakesh D. Raut & Vinay Surendra Yadav & Abhijit Majumdar, 2022. "Blockchain Changing the Outlook of the Sustainable Food Supply Chain to Achieve Net Zero?," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    5. Zhu, Qingyun & Bai, Chunguang & Sarkis, Joseph, 2022. "Blockchain technology and supply chains: The paradox of the atheoretical research discourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Yu Gong & Shenghao Xie & Deepak Arunachalam & Jiang Duan & Jianli Luo, 2022. "Blockchain‐based recycling and its impact on recycling performance: A network theory perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3717-3741, December.
    7. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Sharfuddin Ahmed Khan & Muhammad Shujaat Mubarik & Simonov Kusi‐Sarpong & Himanshu Gupta & Syed Imran Zaman & Mobashar Mubarik, 2022. "Blockchain technologies as enablers of supply chain mapping for sustainable supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3742-3756, December.
    9. Fairouz Mustafa & Suman Lodh & Monomita Nandy & Vikas Kumar, 2022. "Coupling of cryptocurrency trading with the sustainable environmental goals: Is it on the cards?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1152-1168, March.
    10. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    11. Ashish Dwivedi & Dindayal Agrawal & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "Modeling the blockchain readiness challenges for product recovery system," Annals of Operations Research, Springer, vol. 327(1), pages 493-537, August.
    12. Büyüközkan, Gülçin & Tüfekçi, Gizem & Uztürk, Deniz, 2021. "Evaluating Blockchain requirements for effective digital supply chain management," International Journal of Production Economics, Elsevier, vol. 242(C).
    13. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    14. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    15. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    16. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    17. Arim Park & Huan Li, 2021. "The Effect of Blockchain Technology on Supply Chain Sustainability Performances," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    18. Adeeb Noor, 2022. "Adoption of Blockchain Technology Facilitates a Competitive Edge for Logistic Service Providers," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    19. Niloofar Etemadi & Pieter Van Gelder & Fernanda Strozzi, 2021. "An ISM Modeling of Barriers for Blockchain/Distributed Ledger Technology Adoption in Supply Chains towards Cybersecurity," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    20. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:5:y:2021:i:4:p:87-:d:696724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.