IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v4y2020i3p18-d399818.html
   My bibliography  Save this article

Optimizing Long-Lasting Insecticidal Nets Campaign in Ivory Coast

Author

Listed:
  • Irineu de Brito

    (Environmental Engineering Department, São Paulo State University, São José dos Campos 12247-004, Brazil
    Graduate Program in Logistics Systems Engineering, São Paulo University, São Paulo 05508-010, Brazil)

  • Silvia Uneddu

    (Supply Division, UNICEF, 2150 Nordhavn, Copenhagen, Denmark)

  • Emma Maspero

    (Supply Division, UNICEF, 2150 Nordhavn, Copenhagen, Denmark)

  • Paulo Gonçalves

    (Institute of Management and Organizations, Faculty of Economics, Università della Svizzera italiana, 6900 Lugano, Switzerland)

Abstract

This research supports the United Nations Children’s Fund’s (UNICEF) conceptualization, planning and implementation of a campaign for distribution of more than 12 million mosquito nets in Ivory Coast. Procured from four different suppliers in Asia, the nets were transported to the two ports in Ivory Coast before being pre-positioned at 71 Health Districts across the country, a mixed integer network flow model identifies optimal transport options. The process of modeling and the model developed in this paper brought a significant understanding of the problem and, consequently, a reduction in the overall procurement and logistics costs. The implications of using mathematical modeling by practitioners as a tool which contributes to solve humanitarian logistics problems are significant. Mathematical models, like linear programming, can greatly support overall decision-making within humanitarian organizations by helping to ensure that limited resources are used in the most cost-effective and efficient manner. However, it is important to ensure consultations with and involvement by on the ground practitioners to ensure developed solutions assessed to fit the operating context before being implemented.

Suggested Citation

  • Irineu de Brito & Silvia Uneddu & Emma Maspero & Paulo Gonçalves, 2020. "Optimizing Long-Lasting Insecticidal Nets Campaign in Ivory Coast," Logistics, MDPI, vol. 4(3), pages 1-21, August.
  • Handle: RePEc:gam:jlogis:v:4:y:2020:i:3:p:18-:d:399818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/4/3/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/4/3/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    2. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    3. Arthur M. Geoffrion & Richard F. Powers, 1980. "Facility Location Analysis is Just the Beginning (If you Do It Right)," Interfaces, INFORMS, vol. 10(2), pages 22-30, April.
    4. Sameer Kumar & Kristin Niedan‐Olsen & Lynn Peterson, 2009. "Educating the supply chain logistics for humanitarian efforts in Africa: a case study," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 58(5), pages 480-500, June.
    5. Arthur M. Geoffrion, 1976. "The Purpose of Mathematical Programming is Insight, Not Numbers," Interfaces, INFORMS, vol. 7(1), pages 81-92, November.
    6. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    7. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    8. Rottkemper, Beate & Fischer, Kathrin & Blecken, Alexander, 2012. "A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 98-109.
    9. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    10. Abdisalan M Noor & Abdinasir A Amin & Willis S Akhwale & Robert W Snow, 2007. "Increasing Coverage and Decreasing Inequity in Insecticide-Treated Bed Net Use among Rural Kenyan Children," PLOS Medicine, Public Library of Science, vol. 4(8), pages 1-8, August.
    11. Mohammad Moshtari, 2016. "Inter-Organizational Fit, Relationship Management Capability, and Collaborative Performance within a Humanitarian Setting," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1542-1557, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    2. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    3. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    4. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    5. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    6. Nagurney, Anna & Salarpour, Mojtaba & Daniele, Patrizia, 2019. "An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints," International Journal of Production Economics, Elsevier, vol. 212(C), pages 212-226.
    7. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    8. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    9. Yusen Ye & Wen Jiao & Hong Yan, 2020. "Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 807-832, April.
    10. Rameshwar Dubey & Nezih Altay & Constantin Blome, 2019. "Swift trust and commitment: The missing links for humanitarian supply chain coordination?," Annals of Operations Research, Springer, vol. 283(1), pages 159-177, December.
    11. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    12. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    13. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    14. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    15. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    16. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    17. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    18. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    19. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    20. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:4:y:2020:i:3:p:18-:d:399818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.