IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i6p182-d366075.html
   My bibliography  Save this article

Assessing How Land-Cover Change Associated with Urbanisation Affects Ecological Sustainability in the Greater Accra Metropolitan Area, Ghana

Author

Listed:
  • John E. K. Akubia

    (Governance & Sustainability Lab., Faculty of Regional & Environmental Sciences, Trier University, Universitätsring 15, 54296 Trier, Germany)

  • Abubakari Ahmed

    (Department of Planning, Faculty of Planning and Land Management, University for Development Studies, Wa Campus, P.O. Box UPW3, Wa, Upper West Region GH.UW 1331, Ghana)

  • Antje Bruns

    (Governance & Sustainability Lab., Faculty of Regional & Environmental Sciences, Trier University, Universitätsring 15, 54296 Trier, Germany)

Abstract

Intensive land-cover changes (LCC) driven by unplanned urbanisation continue to threaten the sustainability of ecological assets in many cities in Africa. Evaluating the nature and processes of these changes is key to understanding the extent to which ecological instability may be affecting sustainability futures. This study employed integrated remote sensing, GIS, land accounting techniques and utilisation of high-resolution Quickbird and Worldview 2 images to analyse actual (2008–2017) and future (2017–2030) LCC and explored implications for ecological sustainability in the Greater Accra Metropolitan Area, Ghana. After mapping and classifying actual LCC, multi-layer perception (MLP) neural network and Markov chain were employed to predict future LCC for the year 2030. The results indicate that the built-up area increased substantially from 27% in 2008 to 46% in 2017 and is expected to rise to 73% by 2030. In contrast, open-space (10%), forestlands (5%) and grassland/farmlands (49%) decreased progressively (2008–2030). In effect, these land-cover types experienced area turnover ˃100% during the actual and predicted period, indicating high vulnerability of natural land cover to urban growth, ecological degradation and resource depletion. These findings highlight significant implications of LCC for ecological sustainability in the study area. A proactive land-cover/use management plan is necessary to ensure sustainable urban development and ecological land conservation.

Suggested Citation

  • John E. K. Akubia & Abubakari Ahmed & Antje Bruns, 2020. "Assessing How Land-Cover Change Associated with Urbanisation Affects Ecological Sustainability in the Greater Accra Metropolitan Area, Ghana," Land, MDPI, vol. 9(6), pages 1-18, June.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:6:p:182-:d:366075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/6/182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/6/182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    2. John E. K. Akubia & Antje Bruns, 2019. "Unravelling the Frontiers of Urban Growth: Spatio-Temporal Dynamics of Land-Use Change and Urban Expansion in Greater Accra Metropolitan Area, Ghana," Land, MDPI, vol. 8(9), pages 1-23, August.
    3. Korah, Prosper Issahaku & Matthews, Tony & Tomerini, Deanna, 2019. "Characterising spatial and temporal patterns of urban evolution in Sub-Saharan Africa: The case of Accra, Ghana," Land Use Policy, Elsevier, vol. 87(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abebe Mengaw Wubie & Walter T. de Vries & Berhanu Kefale Alemie, 2020. "A Socio-Spatial Analysis of Land Use Dynamics and Process of Land Intervention in the Peri-Urban Areas of Bahir Dar City," Land, MDPI, vol. 9(11), pages 1-27, November.
    2. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangcheng Hu & Yi Liu & Changyan Li, 2022. "Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value in the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    2. Liang Lv & Shihao Zhang & Jie Zhu & Ziming Wang & Zhe Wang & Guoqing Li & Chen Yang, 2022. "Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
    3. Bao Meng & Xuxi Wang & Zhifeng Zhang & Pei Huang, 2022. "Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area," Land, MDPI, vol. 11(9), pages 1-17, September.
    4. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    5. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.
    6. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    7. Jingye Li & Jian Gong & Jean-Michel Guldmann & Jianxin Yang & Zhong Zhang, 2022. "Simulation of Land-Use Spatiotemporal Changes under Ecological Quality Constraints: The Case of the Wuhan Urban Agglomeration Area, China, over 2020–2030," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    8. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    9. Hebing Zhang & Qingqing Yan & Fangfang Xie & Shouchen Ma, 2023. "Evaluation and Prediction of Landscape Ecological Security Based on a CA-Markov Model in Overlapped Area of Crop and Coal Production," Land, MDPI, vol. 12(1), pages 1-18, January.
    10. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    11. Jinling Zhang & Ying Hou & Yifan Dong & Cun Wang & Weiping Chen, 2022. "Land Use Change Simulation in Rapid Urbanizing Regions: A Case Study of Wuhan Urban Areas," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    12. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    13. Zheng, Liang & Wang, Ying & Li, Jiangfeng, 2023. "Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China," Land Use Policy, Elsevier, vol. 125(C).
    14. Qing Liu & Dongdong Yang & Lei Cao, 2022. "Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    15. Yichen Zhang & Chuntao Li & Lang Zhang & Jinao Liu & Ruonan Li, 2022. "Spatial Simulation of Land-Use Development of Feixi County, China, Based on Optimized Productive–Living–Ecological Functions," Sustainability, MDPI, vol. 14(10), pages 1-33, May.
    16. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    17. Shengtang Wang & Yingchun Ge, 2022. "Ecological Quality Response to Multi-Scenario Land-Use Changes in the Heihe River Basin," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    18. Zhao Wang & Tao Li & Shan Yang & Daili Zhong, 2022. "Spatio-Temporal Dynamic and Structural Characteristics of Land Use/Cover Change Based on a Complex Network: A Case Study of the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    19. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    20. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:6:p:182-:d:366075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.