IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p145-d356298.html
   My bibliography  Save this article

Agricultural Landscape Composition Linked with Acoustic Measures of Avian Diversity

Author

Listed:
  • Adam P. Dixon

    (Geography & Environmental Systems, University of Maryland, Baltimore County, MD 21250, USA)

  • Matthew E. Baker

    (Geography & Environmental Systems, University of Maryland, Baltimore County, MD 21250, USA)

  • Erle C. Ellis

    (Geography & Environmental Systems, University of Maryland, Baltimore County, MD 21250, USA)

Abstract

Measuring, monitoring, and managing biodiversity across agricultural regions depends on methods that can combine high-resolution mapping of landscape patterns with local biodiversity observations. This study explores the potential to monitor biodiversity in agricultural landscapes by linking high-resolution remote sensing with passive acoustic monitoring. Land cover maps produced using a small unmanned aerial system (UAS) and PlanetScope (PS) satellite imagery were used to investigate relationships between landscape patterns and an acoustically derived biodiversity index (vocalizing bird species richness) across 12 agricultural sample locations equipped with acoustic recorders in Iowa, USA during the 2018 growing season. Statistical assessment revealed a significant direct association between vocalizing bird richness and percent noncrop vegetation cover. High spatial resolution (1 m) UAS mapping produced stronger statistical associations than PS-based maps (3 m) for landscape composition metrics. Landscape configuration metrics (Shannon’s diversity index, contagion, perimeter-area-ratio, and circumscribing circle index) were either cross-correlated with composition metrics or unusable owing to complete landscape homogeneity in some agricultural landscape samples. This study shows that high resolution mapping of noncrop vegetation cover can be linked with acoustic monitoring of unique bird vocalizations to provide a useful indicator of biodiversity in agricultural landscapes.

Suggested Citation

  • Adam P. Dixon & Matthew E. Baker & Erle C. Ellis, 2020. "Agricultural Landscape Composition Linked with Acoustic Measures of Avian Diversity," Land, MDPI, vol. 9(5), pages 1-18, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:145-:d:356298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Tracy R. Evans & Meredith J. Mahoney & Everett D. Cashatt & Geert De Snoo & C.J.M. Musters, 2016. "Enhancement of Linear Agricultural Areas to Provide Invertebrates as Potential Food for Breeding Birds," Land, MDPI, vol. 5(3), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julieta Benitez & Marcelo D. Barrera & Yamina M. Rosas & Guillermo J. Martínez Pastur & María V. Lencinas, 2022. "Landscape and Stand Characteristics Influence on the Bird Assemblage in Nothofagus antarctica Forests of Tierra del Fuego," Land, MDPI, vol. 11(8), pages 1-16, August.
    2. Mariana Filipe & Angela Lomba & João Pradinho Honrado & Andreia Saavedra Cardoso, 2023. "City-Region Food Systems and Biodiversity Conservation: The Case Study of the Entre-Douro-e-Minho Agrarian Region," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anurag Satpathi & Parul Setiya & Bappa Das & Ajeet Singh Nain & Prakash Kumar Jha & Surendra Singh & Shikha Singh, 2023. "Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    2. László Pásztor & Katalin Takács & János Mészáros & Gábor Szatmári & Mátyás Árvai & Tibor Tóth & Gyöngyi Barna & Sándor Koós & Zsófia Adrienn Kovács & Péter László & Kitti Balog, 2023. "Indirect Prediction of Salt Affected Soil Indicator Properties through Habitat Types of a Natural Saline Grassland Using Unmanned Aerial Vehicle Imagery," Land, MDPI, vol. 12(8), pages 1-23, July.
    3. Shearman, Timothy M. & Varner, J. Morgan & Hood, Sharon M. & Cansler, C. Alina & Hiers, J. Kevin, 2019. "Modelling post-fire tree mortality: Can random forest improve discrimination of imbalanced data?," Ecological Modelling, Elsevier, vol. 414(C).
    4. Johann Baumgartner & Katharina Gruber & Sofia G. Simoes & Yves-Marie Saint-Drenan & Johannes Schmidt, 2020. "Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to Renewables.ninja," Energies, MDPI, vol. 13(9), pages 1-23, May.
    5. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    6. Abhinav Vepa & Amer Saleem & Kambiz Rakhshan & Alireza Daneshkhah & Tabassom Sedighi & Shamarina Shohaimi & Amr Omar & Nader Salari & Omid Chatrabgoun & Diana Dharmaraj & Junaid Sami & Shital Parekh &, 2021. "Using Machine Learning Algorithms to Develop a Clinical Decision-Making Tool for COVID-19 Inpatients," IJERPH, MDPI, vol. 18(12), pages 1-22, June.
    7. Miguel Godinho de Matos & Pedro Ferreira & Michael D. Smith, 2018. "The Effect of Subscription Video-on-Demand on Piracy: Evidence from a Household-Level Randomized Experiment," Management Science, INFORMS, vol. 64(12), pages 5610-5630, December.
    8. Mirza Čengić & Zoran J. N. Steinmann & Pierre Defourny & Jonathan C. Doelman & Céline Lamarche & Elke Stehfest & Aafke M. Schipper & Mark A. J. Huijbregts, 2023. "Global Maps of Agricultural Expansion Potential at a 300 m Resolution," Land, MDPI, vol. 12(3), pages 1-13, February.
    9. Xiao Xu & Meera Ramanujam & Sudha Visvanathan & Shervin Assassi & Zheng Liu & Li Li, 2020. "Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    10. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    11. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Miriam Steurer & Robert Hill, 2019. "Metrics for Evaluating the Performance of Automated Valuation Models," Graz Economics Papers 2019-02, University of Graz, Department of Economics.
    13. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zakia Salod & Ozayr Mahomed, 2023. "VPAgs-Dataset4ML: A Dataset to Predict Viral Protective Antigens for Machine Learning-Based Reverse Vaccinology," Data, MDPI, vol. 8(2), pages 1-12, February.
    15. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    16. Yane Freitas Silva & Rafael Vasconcelos Valadares & Henrique Boriolo Dias & Santiago Vianna Cuadra & Eleanor E. Campbell & Rubens A. C. Lamparelli & Edemar Moro & Rafael Battisti & Marcelo R. Alves & , 2022. "Intense Pasture Management in Brazil in an Integrated Crop-Livestock System Simulated by the DayCent Model," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    17. Xavier Santamaria & Beatriz Roson & Raul Perez-Moraga & Nandakumar Venkatesan & Maria Pardo-Figuerez & Javier Gonzalez-Fernandez & Jaime Llera-Oyola & Estefania Fernández & Inmaculada Moreno & Andres , 2023. "Decoding the endometrial niche of Asherman’s Syndrome at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    19. Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    20. Amit Kumar Srivastava & Suranjana Bhaswati Borah & Payel Ghosh Dastidar & Archita Sharma & Debabrat Gogoi & Priyanuz Goswami & Giti Deka & Suryakanta Khandai & Rupam Borgohain & Sudhanshu Singh & Asho, 2023. "Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India," Agriculture, MDPI, vol. 13(8), pages 1, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:145-:d:356298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.