IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i4p121-d347300.html
   My bibliography  Save this article

Soil Carbon, Nitrogen and Phosphorus Contents along a Gradient of Agricultural Intensity in the Kilombero Valley, Tanzania

Author

Listed:
  • John Livsey

    (Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
    Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden)

  • Edmond Alavaisha

    (Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
    Institute of Resource Assessment, University of Dar es Salaam, Dar es Salaam 35097, Tanzania)

  • Madaka Tumbo

    (Institute of Resource Assessment, University of Dar es Salaam, Dar es Salaam 35097, Tanzania)

  • Steve W. Lyon

    (Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
    Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
    School of Environment and Natural Resources, Ohio State University, Columbus, OH 43210, USA)

  • Antonio Canale

    (Department of Statistical Sciences, University of Padova, 35121 Padua, Italy)

  • Michele Cecotti

    (Department of Statistical Sciences, University of Padova, 35121 Padua, Italy)

  • Regina Lindborg

    (Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
    Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden)

  • Stefano Manzoni

    (Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
    Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden)

Abstract

The preservation of soils which provide many important services to society is a pressing global issue. This is particularly the case in countries like Tanzania, which will experience rapid population growth over coming decades. The country is also currently experiencing rapid land-use change and increasing intensification of its agricultural systems to ensure sufficient food production. However, little is known regarding what the long term effects of this land use change will be, especially concerning soil quality. Therefore, we assessed the effect of irrigation and fertilization in agricultural systems, going from low intensity smallholder to high intensity commercial production, on soil organic carbon (SOC), total nitrogen (TN), and total phosphorous (TP) concentrations and stocks. Soil sampling was conducted within Kilombero Plantations Ltd. (KPL), a high intensity commercial farm located in Kilombero, Tanzania, and also on surrounding smallholder farms, capturing a gradient of agricultural intensity. We found that irrigation had a positive effect on SOC concentrations and stocks while fertilization had a negative effect. Rain-fed non-fertilized production had no effect on soil properties when compared to native vegetation. No difference was found in concentrations of TN or TP across the intensity gradient. However, TN stocks were significantly larger in the surface soils (0–30 cm) of the most intensive production system when compared to native vegetation and smallholder production.

Suggested Citation

  • John Livsey & Edmond Alavaisha & Madaka Tumbo & Steve W. Lyon & Antonio Canale & Michele Cecotti & Regina Lindborg & Stefano Manzoni, 2020. "Soil Carbon, Nitrogen and Phosphorus Contents along a Gradient of Agricultural Intensity in the Kilombero Valley, Tanzania," Land, MDPI, vol. 9(4), pages 1-15, April.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:121-:d:347300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/4/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/4/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Tongwane, Mphethe Isaac & Moeletsi, Mokhele Edmond, 2018. "A review of greenhouse gas emissions from the agriculture sector in Africa," Agricultural Systems, Elsevier, vol. 166(C), pages 124-134.
    3. Nangware Kajia Msofe & Lianxi Sheng & James Lyimo, 2019. "Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    4. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    5. Katherine Tully & Clare Sullivan & Ray Weil & Pedro Sanchez, 2015. "The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions," Sustainability, MDPI, vol. 7(6), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charissa Bosma & Lars Hein, 2023. "The climate and land use change nexus: Implications for designing adaptation and conservation investment strategies in Sub‐Saharan Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3811-3830, October.
    2. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yang, Haijiang & Gou, Xiaohua & Niu, Yibo & Shi, Wenwei & Wang, Xinyun & Wei, Yuxin & Maraseni, Tek, 2024. "Assessing pollinator abundance and services to enhance agricultural sustainability and crop yield optimization in the Qilian Mountains," Agricultural Systems, Elsevier, vol. 221(C).
    5. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    6. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    7. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    8. John Baffes & Xiaoli Etienne, 2024. "Yield growth patterns of food commodities: Insights and challenges," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-21, November.
    9. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    10. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    11. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Guerena, David, 2016. "Perceived, measured, and estimated soil fertility in east Africa: Implications for farmers and researchers," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235466, Agricultural and Applied Economics Association.
    12. Zhu, Xiaohua & Zhang, Yan & Zhu, Yuanyuan & Li, Yurui & Cui, Jiaxing & Yu, Bohua, 2025. "Multidimensional deconstruction and workable solutions for addressing China's food security issues: From the perspective of sustainable diets," Land Use Policy, Elsevier, vol. 148(C).
    13. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Elias M. A. Militao & Elsa M. Salvador & José P. Silva & Olalekan A. Uthman & Stig Vinberg & Gloria Macassa, 2022. "Coping Strategies for Household Food Insecurity, and Perceived Health in an Urban Community in Southern Mozambique: A Qualitative Study," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    15. Jordan Hristov & Yann Clough & Ullrika Sahlin & Henrik G. Smith & Martin Stjernman & Ola Olsson & Amanda Sahrbacher & Mark V. Brady, 2020. "Impacts of the EU's Common Agricultural Policy “Greening” Reform on Agricultural Development, Biodiversity, and Ecosystem Services," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(4), pages 716-738, December.
    16. Zeleke Asaye & Dong-Gill Kim & Fantaw Yimer & Katharina Prost & Oukula Obsa & Menfese Tadesse & Mersha Gebrehiwot & Nicolas Brüggemann, 2022. "Effects of Combined Application of Compost and Mineral Fertilizer on Soil Carbon and Nutrient Content, Yield, and Agronomic Nitrogen Use Efficiency in Maize-Potato Cropping Systems in Southern Ethiopi," Land, MDPI, vol. 11(6), pages 1-20, May.
    17. Giulia Capotorti & Simone Valeri & Arianna Giannini & Valerio Minorenti & Mariagrazia Piarulli & Paolo Audisio, 2023. "On the Role of Natural and Induced Landscape Heterogeneity for the Support of Pollinators: A Green Infrastructure Perspective Applied in a Peri-Urban System," Land, MDPI, vol. 12(2), pages 1-29, January.
    18. Shumpei Hisamoto & Makihiko Ikegami & Koichi Goka & Yoshiko Sakamoto, 2024. "The impact of landscape structure on pesticide exposure to honey bees," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    20. Jemal Ali Mohammed & Temesgen Gashaw & Zinet Alye Yimam, 2025. "Identification of erosion-prone watersheds for prioritizing soil and water conservation in a changing climate using morphometric analysis and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4171-4189, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:121-:d:347300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.