IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v5y2016i3p30-d78408.html
   My bibliography  Save this article

Patterns and Predictors of Recent Forest Conversion in New England

Author

Listed:
  • Alexandra M. Thorn

    (Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, USA)

  • Jonathan R. Thompson

    (Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA)

  • Joshua S. Plisinski

    (Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA)

Abstract

New England forests provide numerous benefits to the region’s residents, but are undergoing rapid development. We used boosted regression tree analysis (BRT) to assess geographic predictors of forest loss to development between 2001 and 2011. BRT combines classification and regression trees with machine learning to generate non-parametric statistical models that can capture non-linear relationships. Based on National Land Cover Database (NLCD) maps of land cover change, we assessed the importance of the biophysical and social variables selected for full region coverage and minimal collinearity in predicting forest loss to development, specifically: elevation, slope, distance to roads, density of highways, distance to built land, distance to cities, population density, change in population density, relative change in population density, population per housing unit, median income, state, land ownership categories and county classification as recreation or retirement counties. The resulting models explained 6.9% of the variation for 2001–2011, 4.5% for 2001–2006 and 1.8% for 2006–2011, fairly high values given the complexity of factors predicting land development and the high resolution of the spatial datasets (30-m pixels). The two most important variables in the BRT were “population density” and “distance to road”, which together made up 55.5% of the variation for 2001–2011, 49.4% for 2001–2006 and 42.9% for 2006–2011. The lower predictive power for 2006–2011 may reflect reduced development due to the “Great Recession”. From our models, we generated high-resolution probability surfaces, which can provide a key input for simulation models of forest and land cover change.

Suggested Citation

  • Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.
  • Handle: RePEc:gam:jlands:v:5:y:2016:i:3:p:30-:d:78408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/5/3/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/5/3/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sohl, Terry & Sayler, Kristi, 2008. "Using the FORE-SCE model to project land-cover change in the southeastern United States," Ecological Modelling, Elsevier, vol. 219(1), pages 49-65.
    2. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    3. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    4. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    5. Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
    6. Johnson, Kenneth M. & Beale, Calvin L., 2002. "Nonmetro Recreation Counties Their Identification and Rapid Growth," Rural America/ Rural Development Perspectives, United States Department of Agriculture, Economic Research Service, vol. 17(4), December.
    7. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    6. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    7. Adam J Terando & Jennifer Costanza & Curtis Belyea & Robert R Dunn & Alexa McKerrow & Jaime A Collazo, 2014. "The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    8. Xin Deng & Dingde Xu & Miao Zeng & Yanbin Qi, 2018. "Landslides and Cropland Abandonment in China’s Mountainous Areas: Spatial Distribution, Empirical Analysis and Policy Implications," Sustainability, MDPI, vol. 10(11), pages 1-14, October.
    9. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    10. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    11. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    12. Zhang, Qianwen & Gao, Wujun & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2017. "Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy," Land Use Policy, Elsevier, vol. 68(C), pages 438-447.
    13. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    14. repec:mpr:mprres:4589 is not listed on IDEAS
    15. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    16. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    17. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    18. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    19. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    20. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    21. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:5:y:2016:i:3:p:30-:d:78408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.