IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1396-d1693814.html
   My bibliography  Save this article

Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin

Author

Listed:
  • Zuqiao Gao

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

  • Xiaolei Ju

    (College of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China)

Abstract

Understanding the relationship between regional vegetation dynamics and water resources is essential for improving integrated vegetation–water management, enhancing ecosystem services, and advancing the sustainable development of ecological–economic–social systems. As China’s second largest river basin, the Yellow River Basin (YRB) is ecologically fragile and experiences severe water scarcity. Vegetation changes further intensify conflicts between water supply and demand. To investigate the evolution and interaction mechanisms between vegetation and water resources in the YRB, this study uses the InVEST model to simulate annual water yield (Wyield) from 1982 to 2020 and applies the Dimidiate Pixel Model (DPM) to estimate fractional vegetation cover (FVC). The Theil–Sen method is applied to quantify the spatiotemporal trends of Wyield and FVC. A pixel-based second-order partial correlation analysis is performed to clarify the intrinsic relationship between FVC and Wyield at the grid scale. The main conclusions are as follows: (1) During the statistical period (1982–2020), the multi-year average annual Wyield in the YRB was 73.15 mm. Interannual Wyield showed a clear fluctuating trend, with an initial decline followed by a subsequent increase. Wyield showed marked spatial heterogeneity, with high values in the southern upper reaches and low values in the Longzhong Loess Plateau and Hetao Plain. During the same period, about 68.74% of the basin experienced increasing Wyield, while declines were concentrated in the upper reaches. (2) The average FVC across the basin was 0.51, showing a significant increasing trend during the statistical period. The long-term average FVC showed significant spatial heterogeneity, with high values in the Fenwei Plain, Shanxi Basin, and Taihang Mountains, and low values in the Loess Plateau and Hetao Plain. Spatially, 68.74% of the basin exhibited significant increases in FVC, mainly in the middle and lower reaches, while decreases were mostly in the upper reaches. (3) Areas with significant FVC–Wyield correlations covered a small portion of the basin: trade-off regions made up 10.35% (mainly in the southern upper reaches), and synergistic areas accounted for 5.26% (mostly in the Hetao Plain and central Loess Plateau), both dominated by grasslands and croplands. Mechanistic analysis revealed spatiotemporal heterogeneity in FVC–Wyield relationships across the basin, influenced by both natural drivers and anthropogenic activities. This study systematically explores the patterns and interaction mechanisms of FVC and Wyield in the YRB, offering a theoretical basis for regional water management, ecological protection, and sustainable development.

Suggested Citation

  • Zuqiao Gao & Xiaolei Ju, 2025. "Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin," Land, MDPI, vol. 14(7), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1396-:d:1693814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1396/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1396-:d:1693814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.