IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1294-d1681069.html
   My bibliography  Save this article

Land Use Dynamics and Ecological Effects of Photovoltaic Development in Xinjiang: A Remote Sensing and Geospatial Analysis

Author

Listed:
  • Babierjiang Dilixiati

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Land and Resources Information Center, Urumqi 830017, China
    Xinjiang Lidar Engineering Technology Center, Urumqi 830002, China)

  • Hongwei Wang

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Lichun Gong

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Land and Resources Information Center, Urumqi 830017, China
    Xinjiang Lidar Engineering Technology Center, Urumqi 830002, China)

  • Jianxin Wei

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Land and Resources Information Center, Urumqi 830017, China
    Xinjiang Lidar Engineering Technology Center, Urumqi 830002, China)

  • Cheng Lei

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Land and Resources Information Center, Urumqi 830017, China
    Xinjiang Lidar Engineering Technology Center, Urumqi 830002, China)

  • Lingzhi Dang

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Xinyuan Zhang

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Wen Gu

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Huanjun Zhang

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Jiayue Zhang

    (School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

Abstract

As an important part of the emerging energy portfolio, the coordinated development of the photovoltaic (PV) industry and ecological environment is a core factor in realizing the high-quality development of the energy industry. Xinjiang, located in northwestern China, possesses vast open land, abundant solar radiation, and low land-use conflict, making it a strategic hub for large-scale PV power station deployment. However, the region’s fragile ecological background is highly sensitive to land-use changes induced by PV infrastructure expansion. Therefore, scientifically evaluating the ecological impacts of PV construction is essential to support environmentally informed operation and maintenance (O&M) strategies.This study investigates the spatial distribution of PV installations and their macro-scale ecological effects across Xinjiang from 2000 to 2020. Utilizing multi-temporal satellite remote sensing data and geospatial analysis techniques on the Google Earth Engine (GEE) platform, we constructed a Remote Sensing Ecological Index (RSEI) model to quantify the long-term ecological response to PV development. It was found that PV installations were concentrated in unutilized land (37.10%) and grassland (34.45%), with the smallest proportion being found in forested land (1.68%). Nearly 70% of the PV areas showed an improving trend in the ecological environment index, and there were significantly more ecological quality-improving areas than degraded areas (69% vs. 31%). There were significant regional differences, and the highest ecological environment index was found in 2020 for the Northern Xinjiang Altay PV area (0.30), while the lowest (0.10) was observed in Hetian in southern Xinjiang. The results of this study provide a spatial optimization basis for the integration of PV development and ecological protection in Xinjiang and provide practical guidance to help the government to formulate a comprehensive management strategy of “PV + ecology”, which will help to realize the synergistic development of clean energy development and ecological safety.

Suggested Citation

  • Babierjiang Dilixiati & Hongwei Wang & Lichun Gong & Jianxin Wei & Cheng Lei & Lingzhi Dang & Xinyuan Zhang & Wen Gu & Huanjun Zhang & Jiayue Zhang, 2025. "Land Use Dynamics and Ecological Effects of Photovoltaic Development in Xinjiang: A Remote Sensing and Geospatial Analysis," Land, MDPI, vol. 14(6), pages 1-19, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1294-:d:1681069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elminshawy, Nabil A.S. & Osama, Amr & Gagliano, Antonio & Oterkus, Erkan & Tina, Giuseppe Marco, 2024. "A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus," Energy, Elsevier, vol. 303(C).
    2. Chang, Rui & Luo, Yong & Zhu, Rong, 2020. "Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China," Renewable Energy, Elsevier, vol. 145(C), pages 478-489.
    3. Cheng, Guishi & Luo, Ercheng & Zhao, Ying & Yang, Yihao & Chen, Binbin & Cai, Youcheng & Wang, Xiaoqiang & Dong, Changqing, 2023. "Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China," Energy, Elsevier, vol. 284(C).
    4. Zareie, Zahra & Ahmadi, Rouhollah & Asadi, Mahdi, 2024. "A comprehensive numerical investigation of a branch-inspired channel in roll-bond type PVT system using design of experiments approach," Energy, Elsevier, vol. 286(C).
    5. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Zisos & Dimitrios Chatzopoulos & Andreas Efstratiadis, 2024. "The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy," Energies, MDPI, vol. 17(23), pages 1-18, November.
    2. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.
    3. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    4. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    5. Krzysztof Mik & Paweł Zawadzki & Jan Tarłowski & Marcin Bugaj & Piotr Grygiel & Sebastian Bykuć, 2021. "Multifaceted Analyses of Four Different Prototype Lightweight Photovoltaic Modules of Novel Structure," Energies, MDPI, vol. 14(8), pages 1-16, April.
    6. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    7. Olmuş, Umutcan & Güzelel, Yunus Emre & Büyükalaca, Orhan, 2025. "Comparative numerical investigation of different PVT collector configurations: Energy and exergy analysis," Energy, Elsevier, vol. 316(C).
    8. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Gao, Xifeng & Li, Yichu & Liu, Mengmeng & Lian, Jijian & Ma, Qian & Zhang, Ju & Wu, Sheng & Cui, Yiming, 2025. "An exploratory framework for analyzing the impact of salt deposition on offshore photovoltaic system," Renewable Energy, Elsevier, vol. 242(C).
    10. Aktaş, Ahmet & Koşan, Meltem & Aktekeli, Burak & Güven, Yaren & Arslan, Erhan & Aktaş, Mustafa, 2024. "Numerical and experimental investigation of a single-body PVT using a variable air volume control algorithm," Energy, Elsevier, vol. 307(C).
    11. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    12. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    13. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    14. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    15. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    16. Larsson, Karl & Green, Rikard & Benth, Fred Espen, 2023. "A stochastic time-series model for solar irradiation," Energy Economics, Elsevier, vol. 117(C).
    17. Harry D. Kambezidis & Konstantinos Mimidis & Kosmas A. Kavadias, 2023. "The Solar Energy Potential of Greece for Flat-Plate Solar Panels Mounted on Double-Axis Systems," Energies, MDPI, vol. 16(13), pages 1-28, June.
    18. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Jadin, Mohd Shawal & Saari, Mohd Mawardi, 2025. "Hierarchical power output prediction for floating photovoltaic systems," Energy, Elsevier, vol. 323(C).
    19. Liu, Bingchun & Lai, Mingzhao & Wang, Yajie & Wang, Yibo & Chen, Jiali & Song, Chengyuan, 2024. "Assessment of green hydrogen production by volatile renewable energy under different SSPs scenarios in China," Renewable Energy, Elsevier, vol. 235(C).
    20. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1294-:d:1681069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.