IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i5p987-d1648602.html
   My bibliography  Save this article

The EU Nature Restoration Law (NRL) and the Common Agricultural Policy (CAP): State of the Art and Future Challenges for Italian Water Resources

Author

Listed:
  • Antonio Manzoni

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy
    Sant’Anna School of Advanced Studies, 56127 Pisa, Italy)

  • Manal Hamam

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Giulia Pastorelli

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Luigi Servadei

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Silvia Chiappini

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Alessandra Pesce

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Serena Tarangioli

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Raffaella Pergamo

    (CREA PB—Council for Agricultural Research and Economics, Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

Abstract

Among its various targets on restoring natural habitats and ecosystems in the EU, the recently adopted Nature Restoration Law (NRL) introduces ambitious targets for restoring surface water bodies (SWBs) as well. Simultaneously, the Italian CAP Strategic Plan for the implementation of the Common Agricultural Policy 2023–2027 has been designed to enhance sustainable agricultural practices, including water resource management. This paper provides a comparative analysis of the synergies, gaps, and challenges between these two regulatory frameworks, focusing on sustainable water use in Italian agriculture. A two-level comparative matrix methodology is employed to evaluate the alignment between the NRL’s objectives for freshwater ecosystems and the measures taken by the Italian CAP Strategic Plan on water resources. The results highlight key areas of convergence, existing shortcomings, and necessary steps for aligning Italian agricultural policies with the EU’s water restoration goals. The findings offer insights for policymakers, researchers, and stakeholders engaged in water governance, biodiversity conservation, and agricultural sustainability.

Suggested Citation

  • Antonio Manzoni & Manal Hamam & Giulia Pastorelli & Luigi Servadei & Silvia Chiappini & Alessandra Pesce & Serena Tarangioli & Raffaella Pergamo, 2025. "The EU Nature Restoration Law (NRL) and the Common Agricultural Policy (CAP): State of the Art and Future Challenges for Italian Water Resources," Land, MDPI, vol. 14(5), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:987-:d:1648602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/5/987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/5/987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandra Langlais, 2023. "The new Common Agricultural Policy: reflecting an agro-ecological transition. The legal perspective," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 51-66, March.
    2. Juan D. Borrero & Jesús Mariscal, 2022. "A Case Study of a Digital Data Platform for the Agricultural Sector: A Valuable Decision Support System for Small Farmers," Agriculture, MDPI, vol. 12(6), pages 1-15, May.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    4. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    5. Alan Matthews, 2020. "The new CAP must be linked more closely to the UN Sustainable Development Goals," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 8(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    5. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    6. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    7. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    8. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    9. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    10. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    11. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    12. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    13. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    14. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    15. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    16. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    17. Hong-Wei Liao & Zhong-Cheng Jiang & Hong Zhou & Xiao-Qun Qin & Qi-Bo Huang & Liang Zhong & Zheng-Gong Pu, 2022. "Dissolved Heavy Metal Pollution and Assessment of a Karst Basin around a Mine, Southwest China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    18. Jianan Qin & Xiang Fu & Shaoming Peng & Yuni Xu & Jie Huang & Sha Huang, 2019. "Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    19. Huang, Dayan & Liu, Chengyi & Yan, Zehao & Kou, Aiju, 2023. "Payments for Watershed Services and corporate green innovation," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 541-556.
    20. Xiaokuan Ni & Zengchuan Dong & Wei Xie & Shujun Wu & Mufeng Chen & Hongyi Yao & Wenhao Jia, 2022. "A Practical Approach for Environmental Flow Calculation to Support Ecosystem Management in Wujiang River, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:987-:d:1648602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.