IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i5p1066-d1655655.html
   My bibliography  Save this article

Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge

Author

Listed:
  • Mengmeng Jiang

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaofang Zhu

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Xunzheng Rao

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Jiu Huang

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Aiming at the remediation of soil in mining areas caused by mining activities, pot experiments were conducted using water jet-loom sludge (WJLS) and biochar as soil amendments to evaluate their potential for enhancing soil fertility and microbial communities of degraded mining soils. Six treatments with varying WJLS (0%, 5%, 15%) and biochar (0%, 3%) application rates were evaluated. Results showed that WJLS can significantly improve soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), and microbial biomass, while reducing soil pH and enhancing ryegrass biomass by 1.6–4.1 times. However, a 3% biochar addition may increase the soil sodium absorption ratio (SAR). Moreover, the role of biochar was mainly reflected in the microbiological properties. The combining of WJLS and biochar increased the soil microbial biomass and obviously improved the diversity and abundance of bacteria and fungi in the soil ( p < 0.05) after the amendment, especially in the biochar addition groups. At the phylum level, the relative abundance of Proteobacteria , Firmicutes , and Actinobacteriota accounted for 72.4%~84.2% of soil bacteria in all treatments, while the fungi were dominated by Ascomycota (58.30%~95.36%) and Fungi_unclassified (1.26%~38.97%), all of which were significantly related to enhanced soil properties especially OC, TN, TP, and cation exchange capacity (CEC). Overall, WJLS and biochar demonstrate strong potential as sustainable amendments for improving soil fertility and biological quality in the reclamation of mining-affected lands.

Suggested Citation

  • Mengmeng Jiang & Xiaofang Zhu & Xunzheng Rao & Jiu Huang, 2025. "Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge," Land, MDPI, vol. 14(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1066-:d:1655655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/5/1066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/5/1066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoodabadi, Majid & Yazdanpanah, Najme & Sinobas, Leonor Rodríguez & Pazira, Ebrahim & Neshat, Ali, 2013. "Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile," Agricultural Water Management, Elsevier, vol. 120(C), pages 30-38.
    2. Yaowei Zhan & Kaixin Jiang & Jiaquan Jiang & Lidan Zhang & Chengxiang Gao & Xiuxiu Qi & Jiayan Fan & Yuechen Li & Shaolong Sun & Xiaolin Fan, 2022. "Soil Aggregate Construction: Contribution from Functional Soil Amendment Fertilizer Derived from Dolomite," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    3. Qadir, M. & Sposito, G. & Smith, C.J. & Oster, J.D., 2021. "Reassessing irrigation water quality guidelines for sodicity hazard," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Chuning Ji & Jiu Huang & Yu Tian & Ying Liu & Joshua Bosco Barvor & Xintong Shao & Zi’ao Li, 2021. "Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Alcívar & Andrés Zurita-Silva & Marco Sandoval & Cristina Muñoz & Mauricio Schoebitz, 2018. "Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    2. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    3. Manuel Matisic & Ivan Dugan & Igor Bogunovic, 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments," Agriculture, MDPI, vol. 14(4), pages 1-25, April.
    4. Chaganti, Vijayasatya N. & Crohn, David M. & Šimůnek, Jirka, 2015. "Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 255-265.
    5. Li, Yanpei & Wang, Jiao & Shao, Ming’an, 2021. "Effects of earthworm casts on water and salt movement in typical Loess Plateau soils under brackish water irrigation," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Xin Chen & Li Liu & Qinyan Yang & Huanan Xu & Guoqing Shen & Qincheng Chen, 2024. "Optimizing Biochar Application Rates to Improve Soil Properties and Crop Growth in Saline–Alkali Soil," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    7. Monaliza Alves dos Santos & Maria Betânia Galvão Santos Freire & Fernando José Freire & Alexandre Tavares da Rocha & Pedro Gabriel de Lucena & Cinthya Mirella Pacheco Ladislau & Hidelblandi Farias de , 2022. "Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    8. Demis Andrade Foronda & Gilles Colinet, 2022. "Combined Application of Organic Amendments and Gypsum to Reclaim Saline–Alkali Soil," Agriculture, MDPI, vol. 12(7), pages 1-10, July.
    9. Mandana Shaygan & Thomas Baumgartl, 2020. "Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments," Sustainability, MDPI, vol. 12(1), pages 1-24, January.
    10. Lindsay Keller & Omololu John Idowu & April Ulery & Mohammed Omer & Catherine E. Brewer, 2023. "Short-Term Biochar Impacts on Crop Performance and Soil Quality in Arid Sandy Loam Soil," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
    11. Fibrianty Minhal & Azwar Ma'as & Eko Hanudin & Putu Sudira, 2020. "Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 93-100.
    12. Das, Bianca T. & Menzies, Neal W. & Dalzell, Scott A. & McKenna, Brigid A. & Kopittke, Peter M., 2022. "Avoiding the point of no return: Maintaining infiltration to remediate saline-sodic Vertosols in high rainfall environments," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Yifan Shen & Qi Li & Xiangjun Pei & Renjie Wei & Bingmei Yang & Ningfei Lei & Xiaochao Zhang & Daqiu Yin & Shijun Wang & Qizhong Tao, 2023. "Ecological Restoration of Engineering Slopes in China—A Review," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    14. Mohamed M. Saffan & Mohamed A. Koriem & Ahmed El-Henawy & Shimaa El-Mahdy & Hassan El-Ramady & Fathy Elbehiry & Alaa El-Dein Omara & Yousry Bayoumi & Khandsuren Badgar & József Prokisch, 2022. "Sustainable Production of Tomato Plants ( Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    15. Zhang, Tibin & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao & Kang, Yaohu, 2018. "Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 91-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1066-:d:1655655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.