IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p483-d1372215.html
   My bibliography  Save this article

Resilience Assessment of Historical and Cultural Cities from the Perspective of Urban Complex Adaptive Systems

Author

Listed:
  • Tianyu Chen

    (Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China)

  • Guangmeng Bian

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Ziyi Wang

    (School of Political Science and Public Administration, Shandong University, Jinan 250199, China)

Abstract

Due to the increasingly complex global climatic environment and the rapid development of China’s urban construction, China’s historical and cultural cities are experiencing an external impact as well as internal fragility. Representing the capacity of the urban system to address impact and pressure, resilience can effectively guarantee the sustainable development of historical and cultural cities. A scientific and reasonable resilience assessment system can guide the resilience construction of historical and cultural cities in an effort to effectively counter the impact and pressure they face. Therefore, it is necessary to research the resilience of historical and cultural cities. On the basis of the complex adaptive system (CAS), and by applying multiple assessment indicators, this paper established a resilience assessment system for China’s historical and cultural cities, comprising 38 indicators in six dimensions, to analyze the characteristics and the influencing mechanisms of the resilience of the historical and cultural cities and to reveal the inherent logic underlying their complex presentation. Using six historical and cultural cities in east China as an example, the study applied the assessment system to assess and analyze the different resilience levels of the cities. The comprehensive resilience of Changzhou City obtained the highest score at 0.64, indicating a higher degree of resilience; the scores of Yantai City, Huzhou City, and Nantong City were 0.59, 0.54, and 0.50, respectively, representing moderate degrees of resilience; the scores of Zhongshan City and Quzhou City were 0.44 and 0.40, respectively, exhibiting a lower degree of resilience. Moreover, the factors that result in an unbalanced development of urban resilience were explored from the perspectives of economy, system, and culture. The paper contains some significance in guiding the development of the resilience of historical and cultural cities.

Suggested Citation

  • Tianyu Chen & Guangmeng Bian & Ziyi Wang, 2024. "Resilience Assessment of Historical and Cultural Cities from the Perspective of Urban Complex Adaptive Systems," Land, MDPI, vol. 13(4), pages 1-24, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:483-:d:1372215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shanshan Dai & Honggang Xu & Fangfang Chen, 2019. "A Hierarchical Measurement Model of Perceived Resilience of Urban Tourism Destination," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(2), pages 777-804, September.
    2. M. Nyström & J.-B. Jouffray & A. V. Norström & B. Crona & P. Søgaard Jørgensen & S. R. Carpenter & Ö. Bodin & V. Galaz & C. Folke, 2019. "Anatomy and resilience of the global production ecosystem," Nature, Nature, vol. 575(7781), pages 98-108, November.
    3. Batabyal, Amitrajeet A., 1998. "The concept of resilience: retrospect and prospect," Environment and Development Economics, Cambridge University Press, vol. 3(2), pages 221-262, May.
    4. Anna Bozza & Domenico Asprone & Gaetano Manfredi, 2015. "Developing an integrated framework to quantify resilience of urban systems against disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1729-1748, September.
    5. Ziyi Wang & Ziqiang Han & Lin Liu & Shaobin Yu, 2021. "Place Attachment and Household Disaster Preparedness: Examining the Mediation Role of Self-Efficacy," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    6. Fikret Berkes, 2007. "Understanding uncertainty and reducing vulnerability: lessons from resilience thinking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 283-295, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Antonio Abujder Ochoa & Alfredo Iarozinski Neto & Paulo Cezar Vitorio Junior & Oriana Palma Calabokis & Vladimir Ballesteros-Ballesteros, 2024. "The Theory of Complexity and Sustainable Urban Development: A Systematic Literature Review," Sustainability, MDPI, vol. 17(1), pages 1-42, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Liu & Yun Luo & Jingjing Pei & Huiquan Wang & Jixia Li & Ying Li, 2021. "Temporal and Spatial Differentiation in Urban Resilience and Its Influencing Factors in Henan Province," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    2. Helen Boon & Alison Cottrell & David King & Robert Stevenson & Joanne Millar, 2012. "Bronfenbrenner’s bioecological theory for modelling community resilience to natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 381-408, January.
    3. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    4. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    5. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    6. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    7. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    8. Tian Wang & Zhaoping Yang & Xiaodong Chen & Fang Han, 2022. "Bibliometric Analysis and Literature Review of Tourism Destination Resilience Research," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    9. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    10. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    11. Liang Zhao & Gaofeng Xu & Yan Cui & Feng Kong & Huina Gao & Xia Zhou, 2023. "Post-Disaster Restoration and Reconstruction Assessment of the Jiuzhaigou Lake Landscape and a Resilience Development Pathway," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    12. Ríos-Núñez, Sandra M. & Coq-Huelva, Daniel & García-Trujillo, Roberto, 2013. "The Spanish livestock model: A coevolutionary analysis," Ecological Economics, Elsevier, vol. 93(C), pages 342-350.
    13. Brune, Sara & Vilá, Olivia & Knollenberg, Whitney, 2023. "Family farms' resilience under the COVID-19 crisis: Challenges and opportunities with agritourism," Land Use Policy, Elsevier, vol. 134(C).
    14. Alton C. Byers & Mohan Bahadur Chand & Jonathan Lala & Milan Shrestha & Elizabeth A. Byers & Teiji Watanabe, 2020. "Reconstructing the History of Glacial Lake Outburst Floods (GLOF) in the Kanchenjunga Conservation Area, East Nepal: An Interdisciplinary Approach," Sustainability, MDPI, vol. 12(13), pages 1-27, July.
    15. Shiyao Zhu & Haibo Feng, 2025. "Strengthening Climate Resilience Through Urban Policy: A Mixed-Method Framework with Case Study Insights," Land, MDPI, vol. 14(4), pages 1-22, April.
    16. Kuang-Chung Lee & Paulina G. Karimova & Shao-Yu Yan & Yee-Shien Li, 2020. "Resilience Assessment Workshops: A Biocultural Approach to Conservation Management of a Rural Landscape in Taiwan," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    17. Hongxun Xiang & Xia Heng & Boleng Zhai & Lichen Yang, 2024. "Digital and Culture: Towards More Resilient Urban Community Governance," Land, MDPI, vol. 13(6), pages 1-18, May.
    18. C. Ordóñez & P. Duinker, 2015. "Climate change vulnerability assessment of the urban forest in three Canadian cities," Climatic Change, Springer, vol. 131(4), pages 531-543, August.
    19. Kathryn J. Bowen & Sharon Friel & Kristie Ebi & Colin D. Butler & Fiona Miller & Anthony J. McMichael, 2011. "Governing for a Healthy Population: Towards an Understanding of How Decision-Making Will Determine Our Global Health in a Changing Climate," IJERPH, MDPI, vol. 9(1), pages 1-18, December.
    20. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:483-:d:1372215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.