IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p448-d1368156.html
   My bibliography  Save this article

Spatial Downscaling of Precipitation Data in Arid Regions Based on the XGBoost-MGWR Model: A Case Study of the Turpan–Hami Region

Author

Listed:
  • Huanhuan He

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China
    These authors contributed equally to this work.)

  • Jinjie Wang

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China
    These authors contributed equally to this work.)

  • Jianli Ding

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Lei Wang

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

Abstract

Accurate and reliable precipitation data are important for analyzing regional precipitation distribution, water resource management, and ecological environment construction. Due to the scarcity of meteorological stations in the Turpan–Hami region, precipitation observation conditions are limited, and it is difficult to obtain precipitation data. Firstly, the applicability of TRMM 3B43v7, GPM_3IMERGM 06, and CMORPH CDR satellite precipitation data for the Turpan–Hami Region was evaluated, and the products with better applicability were selected. Next, the Extreme Gradient Boosting Algorithm (XGBoost) and the Shapley Additive Explanations for Machine Learning (SHAP) model were combined to carry out a feature importance analysis on the climate factors affecting precipitation (mean temperature, actual evapotranspiration, wind speed, cloud cover), from which climate factors with a greater influence on precipitation were selected. Combined with climate factors, normalized difference vegetation index (NDVI), slope, aspect, and elevation as explanatory variables, a Multi-Scale Geographically Weighted Regression (MGWR) model was constructed to obtain the monthly precipitation data of 1 km spatial resolution in the Turpan–Hami area from 2001 to 2020. Finally, the spatiotemporal distribution characteristics and changing trend of precipitation in the Turpan–Hami region from 2001 to 2020 were analyzed. The results show that (1) GPM_3IMERGM 06 satellite precipitation data exhibits good applicability in the Turpan–Hami region. (2) The precision verification of the downscaling results from a monthly scale and an annual scale shows that the accuracy and spatial resolution of the data are improved after downscaling. (3) From 2001 to 2020, the precipitation in the Turpan–Hami region showed an insignificantly increasing trend.

Suggested Citation

  • Huanhuan He & Jinjie Wang & Jianli Ding & Lei Wang, 2024. "Spatial Downscaling of Precipitation Data in Arid Regions Based on the XGBoost-MGWR Model: A Case Study of the Turpan–Hami Region," Land, MDPI, vol. 13(4), pages 1-22, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:448-:d:1368156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    2. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    3. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    4. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    5. Ya-Di Dai & Hui-Guo Zhang, 2025. "Non-Iterative Estimation of Multiscale Geographically and Temporally Weighted Regression Model," Mathematics, MDPI, vol. 13(9), pages 1-16, April.
    6. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    7. Junfeng Wang & Shaoyao Zhang & Wei Deng & Qianli Zhou, 2024. "Metropolitan Expansion and Migrant Population: Correlation Patterns and Influencing Factors in Chengdu, China," Land, MDPI, vol. 13(1), pages 1-19, January.
    8. Xin Lao & Hengyu Gu, 2020. "Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi‐scale geographically weighted regression approach," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1860-1876, December.
    9. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    10. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    11. Li Yue & Hongbo Zhao & Xiaoman Xu & Tianshun Gu & Zeting Jia, 2022. "Quantifying the Spatial Fragmentation Pattern and Its Influencing Factors of Urban Land Use: A Case Study of Pingdingshan City, China," Land, MDPI, vol. 11(5), pages 1-15, May.
    12. Zhang, Wei & Li, Yuqing & Zheng, Caigui, 2023. "The distribution characteristics and driving mechanism of vacant land in Chengdu, China: A perspective of urban shrinkage and expansion," Land Use Policy, Elsevier, vol. 132(C).
    13. Pengzhi Wei & Shaofeng Xie & Liangke Huang & Lilong Liu, 2021. "Ingestion of GNSS-Derived ZTD and PWV for Spatial Interpolation of PM 2.5 Concentration in Central and Southern China," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    14. Longjiang Zhang & Guoping Chen & Junsan Zhao & Yilin Lin & Haibo Yang & Jianhua He, 2025. "Spatiotemporal Characteristics and Scale Effects of Ecosystem Service Bundles in the Xijiang River Basin: Implications for Territorial Spatial Planning and Sustainable Land Management," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    15. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    16. Aditya Kusuma & Bethanna Jackson & Ilan Noy, 2018. "A viable and cost-effective weather index insurance for rice in Indonesia," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 43(2), pages 186-218, September.
    17. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    18. Zhenbao Wang & Shihao Li & Yushuo Zhang & Xiao Wang & Shuyue Liu & Dong Liu, 2024. "Built Environment Renewal Strategies Aimed at Improving Metro Station Vitality via the Interpretable Machine Learning Method: A Case Study of Beijing," Sustainability, MDPI, vol. 16(3), pages 1-25, January.
    19. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    20. Jianshu Duan & Zhengxu Zhao & Youheng Xu & Xiangting You & Feifan Yang & Gang Chen, 2024. "Spatial Distribution Characteristics and Driving Factors of Little Giant Enterprises in China’s Megacity Clusters Based on Random Forest and MGWR," Land, MDPI, vol. 13(7), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:448-:d:1368156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.