IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p281-d1345250.html
   My bibliography  Save this article

Tree Diversity and Its Ecological Importance Value in Silvopastoral Systems: A Study along Elevational Gradients in the Sumaco Biosphere Reserve, Ecuadorian Amazon

Author

Listed:
  • Bolier Torres

    (Facultad de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Puyo 160101, Ecuador
    Animal Science Department, University of Cordoba, Rabanales University Campus, 14071 Cordoba, Spain
    Ochroma Consulting & Services, Tena 150150, Ecuador)

  • Robinson J. Herrera-Feijoo

    (Ochroma Consulting & Services, Tena 150150, Ecuador
    Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador)

  • Alexandra Torres-Navarrete

    (Facultad de Ciencias Jurídicas, Sociales y de la Educación, Universidad Técnica de Babahoyo, Extensión Quevedo (UTB), Km 3 1/2 Vía a Valencia, Quevedo 120303, Ecuador)

  • Carlos Bravo

    (Facultad de Ciencia de la Tierra, Universidad Estatal Amazónica (UEA), Puyo 160101, Ecuador)

  • Antón García

    (Animal Science Department, University of Cordoba, Rabanales University Campus, 14071 Cordoba, Spain)

Abstract

This study analyzes tree diversity and its ecological importance value in silvopastoral systems in the Sumaco Biosphere Reserve (SBR), Ecuador, along an altitudinal gradient of 400–2000 masl. Twenty-six plots distributed into low (400–700 masl), medium (701–1600 masl) and high (1601–2000 masl) zones were used. The Shannon index and the importance value index (IVI), based on abundance, dominance and relative frequency, were estimated. The results highlight that in pastures with dispersed trees, the richness of trees decreases with increasing altitude in the elevational gradient; they also show a higher tree density at lower altitudes in contrast to the Andean–Amazonian primary forests. The lower and middle zones showed higher diversity, linked to regeneration and the presence of nearby forests. Species of high commercial value, such as Cedrela odorata and Jacaranda copaia , were common, reflecting knowledge of the local timber market. In the lower and middle zones, the 10 most important species accounted for more than 70% of the trees, with up to 96% in the upper zone. A total of 51 taxa (including 42 species and nine taxa at the rank of genus) were identified, which were mostly native; 64.7% are classified by the IUCN as least-concern (LC) species, 31.4% as not evaluated (NE) species and 3.9% as vulnerable (VU) species, specifically highlighting Cedrela odorata and Cedrela montana . The study concludes with policy recommendations related to the importance of trees in silvopastoral systems for the conservation of species and the livelihoods of local communities, highlighting the need for responsible management of Amazonian pasturelands.

Suggested Citation

  • Bolier Torres & Robinson J. Herrera-Feijoo & Alexandra Torres-Navarrete & Carlos Bravo & Antón García, 2024. "Tree Diversity and Its Ecological Importance Value in Silvopastoral Systems: A Study along Elevational Gradients in the Sumaco Biosphere Reserve, Ecuadorian Amazon," Land, MDPI, vol. 13(3), pages 1-17, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:281-:d:1345250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    3. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    4. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    5. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    6. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    7. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    8. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    9. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    10. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    11. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    12. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    13. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    14. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    15. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    16. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    17. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    18. Polasky, Stephen & Costello, Christopher & McAusland, Carol, 2004. "On trade, land-use, and biodiversity," Journal of Environmental Economics and Management, Elsevier, vol. 48(2), pages 911-925, September.
    19. Ludovica Dessì & Lina Podda & Giuseppe Brundu & Vanessa Lozano & Antoine Carrouée & Elizabete Marchante & Hélia Marchante & Yohan Petit & Marco Porceddu & Gianluigi Bacchetta, 2021. "Seed Germination Ecophysiology of Acacia dealbata Link and Acacia mearnsii De Wild.: Two Invasive Species in the Mediterranean Basin," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    20. Daniel Coq-Huelva & Angie Higuchi & Rafaela Alfalla-Luque & Ricardo Burgos-Morán & Ruth Arias-Gutiérrez, 2017. "Co-Evolution and Bio-Social Construction: The Kichwa Agroforestry Systems ( Chakras ) in the Ecuadorian Amazonia," Sustainability, MDPI, vol. 9(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:281-:d:1345250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.