IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i1p89-d1317655.html
   My bibliography  Save this article

A Geospatial Decision Support System for Supporting the Assessment of Land Degradation in Europe

Author

Listed:
  • Piero Manna

    (Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), National Research Council (CNR), 80055 Portici, Italy)

  • Antonietta Agrillo

    (Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), National Research Council (CNR), 80055 Portici, Italy)

  • Marialaura Bancheri

    (Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), National Research Council (CNR), 80055 Portici, Italy)

  • Marco Di Leginio

    (Italian Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy)

  • Giuliano Ferraro

    (CRISP Research Center, Department of Agriculture, University of Napoli Federico II, 80055 Naples, Italy)

  • Giuliano Langella

    (CRISP Research Center, Department of Agriculture, University of Napoli Federico II, 80055 Naples, Italy
    Department of Agriculture, University of Napoli Federico II, 80055 Naples, Italy)

  • Florindo Antonio Mileti

    (CRISP Research Center, Department of Agriculture, University of Napoli Federico II, 80055 Naples, Italy)

  • Nicola Riitano

    (Italian Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy)

  • Michele Munafò

    (Italian Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy)

Abstract

Nowadays, Land Degradation Neutrality (LDN) is on the political agenda as one of the main objectives in order to respond to the increasing degradation processes affecting soils and territories. Nevertheless, proper implementation of environmental policies is very difficult due to a lack of the operational, reliable and easily usable tools necessary to support political decisions when identifying problems, defining the causes of degradation and helping to find possible solutions. It is within this framework that this paper attempts to demonstrate a new valuable web-based operational LDN tool as a component of an already running Spatial Decision Support System (S-DSS) developed on a Geospatial Cyberinfrastructure (GCI). The tool could be offered to EU administrative units (e.g., municipalities) so that they may better evaluate the state and the impact of land degradation in their territories. The S-DSS supports the acquisition, management and processing of both static and dynamic data, together with data visualization and on-the-fly computing, in order to perform modelling, all of which is potentially accessible via the Web. The land degradation data utilized to develop the LDN tool refer to the SDG 15.3.1 indicator and were obtained from a platform named Trends.Earth, designed to monitor land change by using earth observations, and post-processed to correct some of the major artefacts relating to urban areas. The tool is designed to support land planning and management by producing data, statistics, reports and maps for any EU area of interest. The tool will be demonstrated through a short selection of practical case studies, where data, tables and stats are provided to challenge land degradation at different spatial extents. Currently, there are WEBGIS systems to visualize land degradation maps but—to our knowledge—this is the first S-DSS tool enabling customized LDN reporting at any NUTS (nomenclature of territorial units for statistics) level for the entire EU territory.

Suggested Citation

  • Piero Manna & Antonietta Agrillo & Marialaura Bancheri & Marco Di Leginio & Giuliano Ferraro & Giuliano Langella & Florindo Antonio Mileti & Nicola Riitano & Michele Munafò, 2024. "A Geospatial Decision Support System for Supporting the Assessment of Land Degradation in Europe," Land, MDPI, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:89-:d:1317655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    2. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco De Pascale & Eleonora Guadagno, 2025. "Climate Change and High-Quality Agri-Food Production: Perceptions of Risk and Adaptation Strategies in the Calabria Region (Southern Italy)," Sustainability, MDPI, vol. 17(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Manuel Hernández & Aliou Faye & Mamadou Ousseynou Ly & Zachary P. Stewart & P. V. Vara Prasad & Leonardo Mendes Bastos & Luciana Nieto & Ana J. P. Carcedo & Ignacio Antonio Ciampitti, 2021. "Soil and Climate Characterization to Define Environments for Summer Crops in Senegal," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    4. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    5. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    6. Samaneh Sadat Nickayin & Francesca Perrone & Barbara Ermini & Giovanni Quaranta & Rosanna Salvia & Filippo Gambella & Gianluca Egidi, 2021. "Soil Quality and Peri-Urban Expansion of Cities: A Mediterranean Experience (Athens, Greece)," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    7. Afshin Ghahramani & John McLean Bennett & Aram Ali & Kathryn Reardon-Smith & Glenn Dale & Stirling D. Roberton & Steven Raine, 2021. "A Risk-Based Approach to Mine-Site Rehabilitation: Use of Bayesian Belief Network Modelling to Manage Dispersive Soil and Spoil," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    8. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Chevuru, Sneha & Lamsal, Gambhir & (Rens) van Beek, L.P.H. & van Vliet, Michelle T.H. & Marston, Landon & Bierkens, Marc F.P., 2025. "Comparing crop growth models across the contiguous USA with a focus on dry and warm spells," Agricultural Water Management, Elsevier, vol. 311(C).
    10. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    11. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    12. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    13. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Sinan Demir & İbrahim Dursun, 2024. "Assessment of pre- and post-fire erosion using the RUSLE equation in a watershed affected by the forest fire on Google Earth Engine: the study of Manavgat River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2499-2527, February.
    15. Yu Feng & Zhenzhong Zeng & Timothy D. Searchinger & Alan D. Ziegler & Jie Wu & Dashan Wang & Xinyue He & Paul R. Elsen & Philippe Ciais & Rongrong Xu & Zhilin Guo & Liqing Peng & Yiheng Tao & Dominick, 2022. "Doubling of annual forest carbon loss over the tropics during the early twenty-first century," Nature Sustainability, Nature, vol. 5(5), pages 444-451, May.
    16. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    17. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Mahmoud TARHINI, 2022. "Aggregate Food Security Measurement Indicators: Current Status and Perspectives," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 23(3), pages 408-418, July.
    20. Dossou-Yovo, E. R. & Zwart, Sander J. & Kouyate, A. & Ouedraogo, I. & Bakare, O., 2019. "Predictors of drought in inland valley landscapes and enabling factors for rice farmers’ mitigation measures in the Sudan-Sahel Zone," Papers published in Journals (Open Access), International Water Management Institute, pages 11(1):1-17..

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:89-:d:1317655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.