IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1565-d1212116.html
   My bibliography  Save this article

Runoff and Sediment Yield Processes in a Tropical Eastern Indian River Basin: A Multiple Machine Learning Approach

Author

Listed:
  • Alireza Moghaddam Nia

    (Faculty of Natural Resources, University of Tehran, Karaj 3158777871, Iran)

  • Debasmita Misra

    (Department of Civil, Geological and Environmental Engineering, College of Engineering and Mines, University of Alaska Fairbanks, P.O. Box 755800, Fairbanks, AK 99775, USA)

  • Mahsa Hasanpour Kashani

    (Department of Water Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 676W+5CX, Iran)

  • Mohsen Ghafari

    (Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 3585698613, Iran)

  • Madhumita Sahoo

    (Department of Mining and Geological Engineering, College of Engineering and Mines, University of Alaska Fairbanks, P.O. Box 755800, Fairbanks, AK 99775, USA)

  • Marzieh Ghodsi

    (Faculty of Geography, University of Tehran, Tehran 1417853933, Iran)

  • Mohammad Tahmoures

    (Faculty of Natural Resources, University of Tehran, Karaj 3158777871, Iran)

  • Somayeh Taheri

    (Faculty of Natural Resources, University of Tehran, Karaj 3158777871, Iran)

  • Maryam Sadat Jaafarzadeh

    (Faculty of Natural Resources, University of Tehran, Karaj 3158777871, Iran)

Abstract

Tropical Indian river basins are well-known for high and low discharges with high peaks of flood during the summer and the rest of the year, respectively. A high intensity of rainfall due to cyclonic and monsoon winds have caused the tropical Indian rivers to witness more runoff. These rivers are also known for carrying a significant amount of sediment load. The complex and non-linear nature of the sediment yield and runoff processes and the variability of these processes depend on precipitation patterns and river basin characteristics. There are a number of other elements that make it difficult to forecast with great precision. The present study attempts to model rainfall–runoff–sediment yield with the help of five machine learning (ML) algorithms—support vector regression (SVR), artificial neural network (ANN) with Elman network, artificial neural network with multilayer perceptron network, adaptive neuro-fuzzy inference system (ANFIS), and local linear regression, which are useful in river basins with scarce hydrological data. Daily, weekly, and monthly runoff and sediment yield (SY) time series of Vamsadhara river basin, India for a period from 1 June to 31 October for the years 1984 to 1995 were simulated using models based on these multiple machine learning algorithms. Simulated results were tested and compared by means of three evaluation criteria, namely Pearson correlation coefficient, Nash–Sutcliffe efficiency, and the difference of slope. The results suggested that daily and weekly predictions of runoff based on all the models can be successfully employed together with precipitation observations to predict future sediment yield in the study basin. The models prepared in the present study can be helpful in providing essential insight to the erosion–deposition dynamics of the river basin.

Suggested Citation

  • Alireza Moghaddam Nia & Debasmita Misra & Mahsa Hasanpour Kashani & Mohsen Ghafari & Madhumita Sahoo & Marzieh Ghodsi & Mohammad Tahmoures & Somayeh Taheri & Maryam Sadat Jaafarzadeh, 2023. "Runoff and Sediment Yield Processes in a Tropical Eastern Indian River Basin: A Multiple Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-15, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1565-:d:1212116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
    2. Kisi, Özgür, 2008. "Constructing neural network sediment estimation models using a data-driven algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 94-103.
    3. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    3. Ozgur Kisi & Coskun Ozkan, 2017. "A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 1-23, January.
    4. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    5. Jhih-Huang Wang & Gwo-Fong Lin & Ming-Jui Chang & I-Hang Huang & Yu-Ren Chen, 2019. "Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3759-3780, September.
    6. Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
    7. Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
    8. Vladimir J. Alarcon, 2021. "Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
    9. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    10. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    11. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    12. Arvind Yadav & Premkumar Chithaluru & Aman Singh & Marwan Ali Albahar & Anca Jurcut & Roberto Marcelo Álvarez & Ramesh Kumar Mojjada & Devendra Joshi, 2022. "Suspended Sediment Yield Forecasting with Single and Multi-Objective Optimization Using Hybrid Artificial Intelligence Models," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    13. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
    14. Laís Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1565-:d:1212116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.