IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p954-d1132332.html
   My bibliography  Save this article

Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region

Author

Listed:
  • Franklin Paredes-Trejo

    (Department of Civil Engineering, San Carlos Campus, University of the Western Plains Ezequiel Zamora, Cojedes 2201, Venezuela
    Laboratório de Análise e Processamento de Imagens de Satélites (LAPIS), Institute of Atmospheric Sciences, A. C. Simões Campus, Federal University of Alagoas, Alagoas 57072-900, Brazil)

  • Humberto Alves Barbosa

    (Laboratório de Análise e Processamento de Imagens de Satélites (LAPIS), Institute of Atmospheric Sciences, A. C. Simões Campus, Federal University of Alagoas, Alagoas 57072-900, Brazil)

  • Gabriel Antunes Daldegan

    (Betty and Gordon Moore Center for Science, Conservation International, 2011 Crystal Drive, Suite 600, Arlington, VA 22202, USA)

  • Ingrid Teich

    (Centre for Development and Environment (CDE)-WOCAT, University of Bern, 63012 Bern, Switzerland
    Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy)

  • César Luis García

    (Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy)

  • T. V. Lakshmi Kumar

    (Atmospheric Science Research Laboratory, Department of Physics, SRM Institute of Science and Technology, Chennai 603203, India)

  • Catarina de Oliveira Buriti

    (National Semiarid Institute (INSA), Ministry of Science, Technology and Innovations (MCTI), Campina Grande 58429-970, Brazil)

Abstract

The Brazilian semiarid region (BSR) has faced severe drought over the last three decades, which has led to a significant decline in land productivity, posing a considerable threat to food security and the local economy and communities. The United Nations Convention to Combat Desertification (UNCCD) has proposed the use of Earth observation-derived vegetation indices for monitoring land degradation across regions. In this study, we aim to evaluate three comprehensive UNCCD-recommended land productivity dynamic (LPD) approaches in the BSR by utilizing the standardized precipitation–evapotranspiration index (SPEI) at 12-month time scales as a benchmark drought index obtained from ground-based measurements. Our findings indicate that the LPD methods utilizing residual trends analysis (RESTREND), Trends.Earth (TE), and the Food and Agricultural Organization’s World Overview of Conservation Approaches and Technologies (FAO-WOCAT) are best suited for identifying degraded land areas in the BSR region compared to other approaches. However, it is advisable to use these methods with caution, since they do not fully capture the impact of drought on vegetation and may result in underestimating the extent of degraded areas. The RESTREND-based LPD, TE, and FAO-WOCAT estimate that the BSR region reached 213,248 km 2 , 248,075 km 2 , and 246,783 km 2 of degraded land, respectively, between 2001 and 2015. These findings may be valuable for decision-makers involved in land management and conservation efforts in the Sertão region of Brazil.

Suggested Citation

  • Franklin Paredes-Trejo & Humberto Alves Barbosa & Gabriel Antunes Daldegan & Ingrid Teich & César Luis García & T. V. Lakshmi Kumar & Catarina de Oliveira Buriti, 2023. "Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region," Land, MDPI, vol. 12(5), pages 1-19, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:954-:d:1132332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    2. Jose Marengo & Mauro Bernasconi, 2015. "Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections," Climatic Change, Springer, vol. 129(1), pages 103-115, March.
    3. Jose A. Marengo & Ana Paula M. A. Cunha & Carlos A. Nobre & Germano G. Ribeiro Neto & Antonio R. Magalhaes & Roger R. Torres & Gilvan Sampaio & Felipe Alexandre & Lincoln M. Alves & Luz A. Cuartas & K, 2020. "Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2589-2611, September.
    4. H. Barbosa & T. Lakshmi Kumar & L. Silva, 2015. "Recent trends in vegetation dynamics in the South America and their relationship to rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 883-899, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduilson Carneiro & Wilza Lopes & Giovana Espindola, 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil," Land, MDPI, vol. 10(5), pages 1-16, May.
    2. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    3. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    4. da Silva, Antonio Samuel Alves & Stosic, Tatijana & Arsenić, Ilija & Menezes, Rômulo Simões Cezar & Stosic, Borko, 2023. "Multifractal analysis of standardized precipitation index in Northeast Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Delazeri, Linda Márcia Mendes & Cunha, Dênis Antônio da & Couto-Santos, Fabiana Rita, 2018. "Climate change and urbanization: evidence from the Semi-Arid region of Brazil," Revista Brasileira de Estudos Regionais e Urbanos, Associação Brasileira de Estudos Regionais e Urbanos (ABER), vol. 12(2), pages 129-154.
    6. de Jong, Pieter & Barreto, Tarssio B. & Tanajura, Clemente A.S. & Kouloukoui, Daniel & Oliveira-Esquerre, Karla P. & Kiperstok, Asher & Torres, Ednildo Andrade, 2019. "Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model," Renewable Energy, Elsevier, vol. 141(C), pages 390-401.
    7. Richarde Marques Silva & Celso Augusto Guimarães Santos & Jorge Flávio Cazé Braga Costa Silva & Alexandro Medeiros Silva & Reginaldo Moura Brasil Neto, 2020. "Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 829-849, July.
    8. de Jong, Pieter & Barreto, Tarssio B. & Tanajura, Clemente A.S. & Oliveira-Esquerre, Karla P. & Kiperstok, Asher & Andrade Torres, Ednildo, 2021. "The Impact of Regional Climate Change on Hydroelectric Resources in South America," Renewable Energy, Elsevier, vol. 173(C), pages 76-91.
    9. Santiago Fernández-Rodríguez & Pablo Durán-Barroso & Inmaculada Silva-Palacios & Rafael Tormo-Molina & José María Maya-Manzano & Ángela Gonzalo-Garijo, 2016. "Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 121-137, October.
    10. Jessica B. Moraes & Henderson S. Wanderley & Rafael C. Delgado, 2023. "Areas susceptible to desertification in Brazil and projected climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1463-1483, March.
    11. Gilsonley Lopes Santos & Marcos Gervasio Pereira & Rafael Coll Delgado & José Luiz Rodrigues Torres & Matheus Duarte Silva Cravo & Antônio Carlos Barreto & Iris Cristiane Magistrali, 2020. "Evaluation of natural regeneration and recovery of environmental services in a watershed in the Cerrado-Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5571-5583, August.
    12. Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
    13. David Marcolino Nielsen & Marcio Cataldi & André Luiz Belém & Ana Luiza Spadano Albuquerque, 2016. "Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 909-928, September.
    14. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    15. Lucas Eduardo Oliveira Aparecido & Pedro Antonio Lorençone & João Antonio Lorençone & Kamila Cunha Meneses & José Reinaldo da Silva Cabral Moraes & Maryzélia Furtado Farias, 2022. "Soil water seasonal and spatial variability in Northeast Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6136-6152, May.
    16. Jose A. Marengo & Ana Paula M. A. Cunha & Carlos A. Nobre & Germano G. Ribeiro Neto & Antonio R. Magalhaes & Roger R. Torres & Gilvan Sampaio & Felipe Alexandre & Lincoln M. Alves & Luz A. Cuartas & K, 2020. "Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2589-2611, September.
    17. João Paulo Lyra Fialho Brêda & Rodrigo Cauduro Dias Paiva & Walter Collischon & Juan Martín Bravo & Vinicius Alencar Siqueira & Elisa Bolzan Steinke, 2020. "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections," Climatic Change, Springer, vol. 159(4), pages 503-522, April.
    18. Florence M. Murungweni & Onisimo Mutanga & John O. Odiyo, 2020. "Rainfall Trend and Its Relationship with Normalized Difference Vegetation Index in a Restored Semi-Arid Wetland of South Africa," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    19. Maria Josiell Nascimento da Silva & Ahmad Saeed Khan & Patrícia Verônica Pinheiro Sales Lima, 2021. "Graywater Reuse: The Effects on Income and Agricultural Production Sustainability of Family Farming Systems in the Semiarid Region of Ceará, Brazil," Journal of Agricultural Studies, Macrothink Institute, vol. 9(1), pages 44-64, June.
    20. Lidia Yadira Perez-Aguilar & Wenseslao Plata-Rocha & Sergio Alberto Monjardin-Armenta & Cuauhtémoc Franco-Ochoa, 2022. "Aridity Analysis Using a Prospective Geospatial Simulation Model in This Mid-Century for the Northwest Region of Mexico," Sustainability, MDPI, vol. 14(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:954-:d:1132332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.