IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1069-d1146787.html
   My bibliography  Save this article

Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies

Author

Listed:
  • Aikaterini Roxani

    (Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece)

  • Athanasios Zisos

    (Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece)

  • Georgia-Konstantina Sakki

    (Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece)

  • Andreas Efstratiadis

    (Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece)

Abstract

The European Green Deal has set climate and energy targets for 2030 and the goal of achieving net zero greenhouse gas emissions by 2050, while supporting energy independence and economic growth. Following these goals, and as expected, the transition to “green” renewable energy is growing and will be intensified, in the near future. One of the main pillars of this transition, particularly for Mediterranean countries, is solar photovoltaic (PV) power. However, this is the least land-efficient energy source, while it is also highly competitive in food production, since solar parks are often developed in former agricultural areas, thus resulting in the systematic reduction in arable lands. Therefore, in the context of PV energy planning, the protection and preservation of arable lands should be considered a key issue. The emerging technology of agrovoltaics offers a balanced solution for both agricultural and renewable energy development. The sustainable “symbiosis” of food and energy under common lands also supports the specific objective of the post-2020 Common Agricultural Policy, regarding the mitigation of and adaptation to the changing climate, as well as the highly uncertain socio-economic and geopolitical environment. The purpose of this study is twofold, i.e., (a) to identify the state of play of the technologies and energy efficiency measures of agrovoltaics, and (b) to present a comprehensive analysis of their interactions with the water–energy–food–land nexus. As a proof of concept, we consider the plain of Arta, which is a typical agricultural area of Greece, where we employ a parametric analysis to assess key features of agrovoltaic development with respect to energy vs. food production, as well as water saving, as result of reduced evapotranspiration.

Suggested Citation

  • Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1069-:d:1146787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    2. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).
    3. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    5. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    6. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    7. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    8. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    9. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    10. Elmehdi Mouhib & Leonardo Micheli & Florencia M. Almonacid & Eduardo F. Fernández, 2022. "Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics," Energies, MDPI, vol. 15(23), pages 1-30, November.
    11. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    12. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    3. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    4. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    5. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    6. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    7. Rittick Maity & Kumarasamy Sudhakar & Amir Abdul Razak & Alagar Karthick & Dan Barbulescu, 2023. "Agrivoltaic: A Strategic Assessment Using SWOT and TOWS Matrix," Energies, MDPI, vol. 16(8), pages 1-18, April.
    8. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    9. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    10. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    11. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    12. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    13. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    15. Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
    16. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    17. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    18. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    19. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    20. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1069-:d:1146787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.