IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p577-d1082816.html
   My bibliography  Save this article

Spatiotemporal Dynamics of Ecosystem Services Driven by Human Modification over the Past Seven Decades: A Case Study of Sihu Agricultural Watershed, China

Author

Listed:
  • Haowen Lin

    (College of Urban and Environment Sciences, Peking University, Beijing 100871, China)

  • Hong Yun

    (School of Design, South China University of Technology, Guangzhou 511436, China)

Abstract

Understanding the effects of human modification on ecosystem services is critical for effectively managing multiple services and achieving long-term sustainability. The historical dynamics of ecosystem services are important for detecting the impacts before and after intensive modification and deserve further study. To this end, we quantified the spatiotemporal dynamics of 11 ecosystem services across the Sihu agricultural watershed in 1954, 1983, 2001, and 2018. We used the Spearman coefficient, self-organized maps clustering, and redundancy analysis to explore the spatial patterns and potential modification drivers of temporal variations of ecosystem service provision. The results revealed the following: (1) The spatial correlations among ecosystem services in a single year were inconsistent with the ecosystem service change associations during two-time steps. The snapshot correlations at one time led to misunderstandings (such as water yield and runoff control or soil carbon sequestration, and habitat quality changed direction from synergy to trade-off) and missed synergies (such as water purification and recreational potential); (2) Most ecosystem services could be synergetic in one bundle with multifunctionality before intensive modification, but later transformed to single or limited services dominated bundles, especially in lake-polder areas; (3) Lake reclamation and hydraulic infrastructure were the most significant modification indicators explaining the variation of ecosystem services (30.9% of variance explained by lake reclamation in 1954, 38.2% of variance explained by hydraulic infrastructure in 2018). Meanwhile, changes in dominant drivers also indicated the transition from lake-based ecosystem service supply to engineered service. An improved understanding of the spatiotemporal pattern of ecosystem services and the underlying human modification influence is vital for realizing the sustainability and multifunctionality of agricultural watershed.

Suggested Citation

  • Haowen Lin & Hong Yun, 2023. "Spatiotemporal Dynamics of Ecosystem Services Driven by Human Modification over the Past Seven Decades: A Case Study of Sihu Agricultural Watershed, China," Land, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:577-:d:1082816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hein, Lars & van Koppen, C.S.A. (Kris) & van Ierland, Ekko C. & Leidekker, Jakob, 2016. "Temporal scales, ecosystem dynamics, stakeholders and the valuation of ecosystems services," Ecosystem Services, Elsevier, vol. 21(PA), pages 109-119.
    2. Winfree, Rachael & Gross, Brian J. & Kremen, Claire, 2011. "Valuing pollination services to agriculture," Ecological Economics, Elsevier, vol. 71(C), pages 80-88.
    3. Laura Barral-Fraga & María Teresa Barral & Keeley L. MacNeill & Diego Martiñá-Prieto & Soizic Morin & María Carolina Rodríguez-Castro & Baigal-Amar Tuulaikhuu & Helena Guasch, 2020. "Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review," IJERPH, MDPI, vol. 17(7), pages 1-28, March.
    4. Roxanne Suzette Lorilla & Konstantinos Poirazidis & Stamatis Kalogirou & Vassilis Detsis & Aristotelis Martinis, 2018. "Assessment of the Spatial Dynamics and Interactions among Multiple Ecosystem Services to Promote Effective Policy Making across Mediterranean Island Landscapes," Sustainability, MDPI, vol. 10(9), pages 1-28, September.
    5. Vallet, Améline & Locatelli, Bruno & Levrel, Harold & Wunder, Sven & Seppelt, Ralf & Scholes, Robert J. & Oszwald, Johan, 2018. "Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies," Ecological Economics, Elsevier, vol. 150(C), pages 96-106.
    6. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blachly, Ben & Sims, Charles & Warziniack, Travis, 2024. "Ecosystem complementarities: Evidence from over 700 U.S. watersheds," Ecological Economics, Elsevier, vol. 219(C).
    2. Santiago Madrigal-Martínez & José Luis Miralles i García, 2020. "Assessment Method and Scale of Observation Influence Ecosystem Service Bundles," Land, MDPI, vol. 9(10), pages 1-19, October.
    3. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    4. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    5. Lippert, Christian & Feuerbacher, Arndt & Narjes, Manuel, 2021. "Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations," Ecological Economics, Elsevier, vol. 180(C).
    6. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    7. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    8. Parisa Alizadeh-Dehkordi & Behnam Kamkar & Alireza Nehbandani, 2024. "The effect of climate change on the future of rainfed wheat cultivation in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 687-709, January.
    9. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.
    10. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    11. Qiurong Xu & Ruipeng Li & Jia Yu & Pei Zhang, 2023. "Synergies and Trade-Offs among Different Ecosystem Services through the Analyses of Spatio-Temporal Changes in Beijing, China," Land, MDPI, vol. 12(5), pages 1-13, May.
    12. Irina Pilvere & Aleksejs Nipers & Agnese Krievina & Ilze Upite & Daniels Kotovs, 2022. "LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers," Agriculture, MDPI, vol. 12(5), pages 1-26, May.
    13. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).
    14. Yanfei Kou & Sanming Chen & Kefa Zhou & Ziyun Qiu & Jiaming He & Xian Shi & Xiaozhen Zhou & Qing Zhang, 2024. "Spatiotemporal Patterns and Coupling Coordination Analysis of Multiscale Social–Economic–Ecological Effects in Ecologically Vulnerable Areas Based on Multi-Source Data: A Case Study of the Tuha Region," Land, MDPI, vol. 13(3), pages 1-28, February.
    15. Timuçin Everest & Hakan Koparan & Ali Sungur & Hasan Özcan, 2022. "An important tool against combat climate change: Land suitability assessment for canola (a case study: Çanakkale, NW Turkey)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13137-13172, November.
    16. Richards, Daniel Rex & Lavorel, Sandra, 2022. "Integrating social media data and machine learning to analyse scenarios of landscape appreciation," Ecosystem Services, Elsevier, vol. 55(C).
    17. Siva K. Balasundram & Redmond R. Shamshiri & Shankarappa Sridhara & Nastaran Rizan, 2023. "The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    18. Teixeira, Heitor Mancini & Vermue, Ardjan J. & Cardoso, Irene Maria & Peña Claros, Marielos & Bianchi, Felix J.J.A., 2018. "Farmers show complex and contrasting perceptions on ecosystem services and their management," Ecosystem Services, Elsevier, vol. 33(PA), pages 44-58.
    19. Tingting Pan & Yu Zhang & Fengqin Yan & Fenzhen Su, 2023. "Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 12(4), pages 1-17, March.
    20. Hong Zhang & Chao Han & Tom D. Breeze & Mengdan Li & Shibonage K. Mashilingi & Jun Hua & Wenbin Zhang & Xuebin Zhang & Shiwen Zhang & Jiandong An, 2022. "Bumblebee Pollination Enhances Yield and Flavor of Tomato in Gobi Desert Greenhouses," Agriculture, MDPI, vol. 12(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:577-:d:1082816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.