IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p502-d1072182.html
   My bibliography  Save this article

A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India

Author

Listed:
  • Venkatesh Paramesh

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

  • Parveen Kumar

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

  • Ranjan Parajuli

    (Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
    Indigoag, Boston, MA 02129, USA)

  • Rosa Francaviglia

    (CREA, Research Centre for Agriculture and Environment, 00184 Rome, Italy)

  • Kallakeri Kannappa Manohara

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

  • Vadivel Arunachalam

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

  • Trivesh Mayekar

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

  • Sulekha Toraskar

    (ICAR-Central Coastal Agricultural Research Institute, Goa Velha 403402, Goa, India)

Abstract

Crop diversification is essential in lowland rice cropping systems to achieve sustainability, improve soil health, and as a climate-resilient practice to reduce greenhouse gas (GHG) emissions. A life cycle assessment (LCA) was conducted for the farms in the west-coast region of India to assess the environmental impact of the rice–rice and rice–cowpea cropping systems. The life cycle impact assessment (LCIA) was evaluated in a “cradle-to-gate” perspective. A higher energy consumption was found in the rice–rice system (32,673 vs. 18,197 MJ/ha), while the net energy output was higher in the rice–cowpea system (211,071 vs. 157,409 MJ/ha). Energy consumption was 44% lower in the rice–cowpea system, which was coupled with a higher energy efficiency (11.6 vs. 4.8), attributed to the lower energy consumption and the higher energy output. Further, the results indicated an energy saving potentialin the rice–cowpea system due to the higher use of renewable resources such as farmyard manure. Field emissions, fertilizer production, and fuel consumption were the major contributors to the greenhouse gas (GHG) emissions in both cropping systems. The total GHG emissions were 81% higher in the rice–rice system (13,894 ± 1329 kg CO 2 eq./ha) than in the rice–cowpea system (7679 ± 719 kg CO 2 eq./ha). The higher GHG emissions in the rice–rice system were largely due to the higher use of fertilizers, diesel fuel, and machinery. Hence, diversifying the winter rice with a cowpea crop and its large-scale adoption on the west coast of India would provide multiple benefits in decreasing the environmental impact and improving the energy efficiency to achieve sustainability and climate resilience in rice-based cropping systems.

Suggested Citation

  • Venkatesh Paramesh & Parveen Kumar & Ranjan Parajuli & Rosa Francaviglia & Kallakeri Kannappa Manohara & Vadivel Arunachalam & Trivesh Mayekar & Sulekha Toraskar, 2023. "A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India," Land, MDPI, vol. 12(2), pages 1-14, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:502-:d:1072182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mabhaudhi, T. & Chimonyo, V. G. P. & Hlahla, S. & Massawe, F. & Mayes, S. & Nhamo, Luxon & Modi, A. T., 2019. "Prospects of orphan crops in climate change," Papers published in Journals (Open Access), International Water Management Institute, pages 250(3):695-.
    2. Tuti, M.D. & Prakash, Ved & Pandey, B.M. & Bhattacharyya, R. & Mahanta, D. & Bisht, J.K. & Kumar, Mukesh & Mina, B.L. & Kumar, N. & Bhatt, J.C. & Srivastva, A.K., 2012. "Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas," Energy, Elsevier, vol. 45(1), pages 986-993.
    3. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    4. S. Mahendra Dev, 2012. "Small Farmers in India: Challenges and Opportunities," Working Papers id:5037, eSocialSciences.
    5. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    6. Venkatesh Paramesh & Giri Bhavan Sreekanth & Eaknath. B. Chakurkar & H.B. Chethan Kumar & Parappurath Gokuldas & Kallakeri Kannappa Manohara & Gopal Ramdas Mahajan & Racharla Solomon Rajkumar & Natesa, 2020. "Ecosystem Network Analysis in a Smallholder Integrated Crop–Livestock System for Coastal Lowland Situation in Tropical Humid Conditions of India," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    7. S. Mahendra Dev, 2012. "Small farmers in India: Challenges and opportunities," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2012-014, Indira Gandhi Institute of Development Research, Mumbai, India.
    8. Gennifer Meldrum & Dunja Mijatović & Wilfredo Rojas & Juana Flores & Milton Pinto & Grover Mamani & Eleuterio Condori & David Hilaquita & Helga Gruberg & Stefano Padulosi, 2018. "Climate change and crop diversity: farmers’ perceptions and adaptation on the Bolivian Altiplano," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 703-730, April.
    9. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    10. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    11. Paramesh, Venkatesh & Parajuli, Ranjan & Chakurkar, E.B. & Sreekanth, G.B. & Kumar, H.B. Chetan & Gokuldas, P.P. & Mahajan, Gopal R. & Manohara, K.K. & Viswanatha, Reddy K. & Ravisankar, N., 2019. "Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kariyaiah Basavalingaiah & Y. M. Ramesha & Venkatesh Paramesh & G. A. Rajanna & Shankar Lal Jat & Shiva Dhar Misra & Ashok Kumar Gaddi & H. C. Girisha & G. S. Yogesh & S. Raveesha & T. K. Roopa & K. S, 2020. "Energy Budgeting, Data Envelopment Analysis and Greenhouse Gas Emission from Rice Production System: A Case Study from Puddled Transplanted Rice and Direct-Seeded Rice System of Karnataka, India," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    2. Sridhara, Shankarappa & Manoj, Konapura Nagaraja & Gopakkali, Pradeep, 2023. "A micro-level assessment of carbon equivalent greenhouse gas emission and energy budgeting of rice cultivation in India," Energy, Elsevier, vol. 278(C).
    3. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    4. Du, Xiangbei & He, Wenchang & Gao, Shangqin & Liu, Dong & Wu, Wenge & Tu, Debao & Kong, Lingcong & Xi, Min, 2022. "Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production," Energy, Elsevier, vol. 245(C).
    5. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    6. N. Lalitha & Madhusudan Bandi & Soumya Vinayan, 2021. "Bhalia wheat in Gujarat: Does geographical indication registration have a role in arresting the decline?," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 23(1), pages 93-112, June.
    7. Mohammad Mizanur Rahman & Mohammed Zia Uddin Kamal & Senaratne Ranamukhaarachchi & Mohammad Saiful Alam & Mohammad Khairul Alam & Mohammad Arifur Rahman Khan & Mohammad Moshiul Islam & Mohammad Ashraf, 2022. "Effects of Organic Amendments on Soil Aggregate Stability, Carbon Sequestration, and Energy Use Efficiency in Wetland Paddy Cultivation," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    8. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    9. T. S. Amjath-Babu & Pramod K. Aggarwal & Sonja Vermeulen, 2019. "Climate action for food security in South Asia? Analyzing the role of agriculture in nationally determined contributions to the Paris agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 283-298, March.
    10. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    11. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    12. Komol Singha & Rohi Choudhary & Kedar Vishnu, 2014. "Growth and Diversification of Horticulture Crops in Karnataka," SAGE Open, , vol. 4(3), pages 21582440145, September.
    13. Nataraj, Manikantha & Bhattacharya, Soham, 2020. "Bitter Convergence: Contemporary Crisis of Labour in Rural West Bengal," MPRA Paper 103363, University Library of Munich, Germany.
    14. Paramasivam Ramasamy & Umanath Malaiarasan, 2023. "Agricultural credit in India: determinants and effects," Indian Economic Review, Springer, vol. 58(1), pages 169-195, June.
    15. Rudrani Bhattacharya & Parma Chakravartti & Sudipto Mundle, 2019. "Forecasting India’s economic growth: a time-varying parameter regression approach," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 12(3), pages 205-228, September.
    16. Rohit Saini & Manjeet Kaur & Randeep Singh & Kashish Arora & Gurlal Singh & Gurleen Kaur & Sukhdeep Singh & Arshdeep Singh & Dalbeer Singh, 2022. "Understanding Sustenance of Small Farm Holders: A Study of Income Inequality among Farm Households in Indian Punjab," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    17. N. Krishnaji, 2018. "Dynamics of Land Inequality: Polarization or Pauperization?," Indian Journal of Human Development, , vol. 12(2), pages 204-216, August.
    18. Damodar Jena & Debasish Mohapatra & Saswat Kumar Pani & Sonali Patnaik & Nishith Ranjan Parida & Itishree Panda & Abdulkarem Daoun, 2023. "E-Marketing of Agriculture Commodities: Challenges and Prospects for Marginal and Small Farmers in India," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 9(1), pages 42-48, 01-2023.
    19. Bastian Winkler & Iris Lewandowski & Angelika Voss & Stefanie Lemke, 2018. "Transition towards Renewable Energy Production? Potential in Smallholder Agricultural Systems in West Bengal, India," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    20. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:502-:d:1072182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.