IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p490-d1070395.html
   My bibliography  Save this article

Thematic Comparison between ESA WorldCover 2020 Land Cover Product and a National Land Use Land Cover Map

Author

Listed:
  • Diogo Duarte

    (Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), DEEC, University of Coimbra, Polo 2, 3030-290 Coimbra, Portugal)

  • Cidália Fonte

    (Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), DEEC, University of Coimbra, Polo 2, 3030-290 Coimbra, Portugal
    Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal)

  • Hugo Costa

    (Direção-Geral do Território, Rua da Artilharia Um, 107, 1099-052 Lisbon, Portugal
    NOVA Information Management School (NOVA IMS), Campus de Campolide, Nova University Lisbon, 1070-312 Lisbon, Portugal)

  • Mário Caetano

    (Direção-Geral do Território, Rua da Artilharia Um, 107, 1099-052 Lisbon, Portugal
    NOVA Information Management School (NOVA IMS), Campus de Campolide, Nova University Lisbon, 1070-312 Lisbon, Portugal)

Abstract

This work presents a comparison between a global and a national land cover map, namely the ESA WorldCover 2020 (WC20) and the Portuguese use/land cover map (Carta de Uso e Ocupação do Solo 2018) (COS18). Such a comparison is relevant given the current amount of publicly available LULC products (either national or global) where such comparative studies enable a better understanding regarding different sets of LULC information and their production, focus and characteristics, especially when comparing authoritative maps built by national mapping agencies and global land cover focused products. Moreover, this comparison is also aimed at complementing the global validation report released with the WC20 product, which focused on global and continental level accuracy assessments, with no additional information for specific countries. The maps were compared by following a framework composed by four steps: (1) class nomenclature harmonization, (2) computing cross-tabulation matrices between WC20 and the Portuguese map, (3) determining the area occupied by each harmonized class in each data source, and (4) visual comparison between the maps to illustrate their differences focusing on Portuguese landscape details. Some of the differences were due to the different minimum mapping unit ofCOS18 and WC20, different nomenclatures and focuses on either land use or land cover. Overall, the results show that while WC20 detail is able to distinguish small occurrences of artificial surfaces and grasslands within an urban environment, WC20 is often not able to distinguish sparse/individual trees from the neighboring cover, which is a common occurrence in the Portuguese landscape. While selecting a map, users should be aware that differences between maps can have a range of causes, such as scale, temporal reference, nomenclature and errors.

Suggested Citation

  • Diogo Duarte & Cidália Fonte & Hugo Costa & Mário Caetano, 2023. "Thematic Comparison between ESA WorldCover 2020 Land Cover Product and a National Land Use Land Cover Map," Land, MDPI, vol. 12(2), pages 1-16, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:490-:d:1070395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tesfamariam Engida Mengesha & Lulseged Tamene Desta & Paolo Gamba & Getachew Tesfaye Ayehu, 2024. "Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in Context of Small Farm Holds in Ethiopia," Land, MDPI, vol. 13(3), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    2. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    3. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    4. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    5. Mu Li & Lingli Zhang & Yuanyuan Chen & Shuangliang Liu & Mingyao Cai & Qiangqiang Sun, 2024. "Construction of Landscape Ecological Risk Collaborative Management Network in Mountainous Cities—A Case Study of Zhangjiakou," Land, MDPI, vol. 13(10), pages 1-28, September.
    6. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    7. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    8. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    9. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Dongjie Wang & Hao Yang & Yueming Hu & A-Xing Zhu & Xiaoyun Mao, 2022. "Analyzing Spatio-Temporal Characteristics of Cultivated Land Fragmentation and Their Influencing Factors in a Rapidly Developing Region: A Case Study in Guangdong Province, China," Land, MDPI, vol. 11(10), pages 1-21, October.
    11. Xuemao Zhang & Binggeng Xie & Junhan Li & Chuan Yuan, 2023. "Spatiotemporal Distribution and Driving Force Analysis of the Ecosystem Service Value in the Fujiang River Basin, China," Land, MDPI, vol. 12(2), pages 1-16, February.
    12. Qiangqiang Yang & Pian Zhang & Xiaocong Qiu & Guanglai Xu & Jianyu Chi, 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    13. Guannan Dong & Zhengjia Liu & Guoming Du & Jinwei Dong & Kai Liu, 2022. "Assessment of vegetation damage by three typhoons (Bavi, Maysak, and Haishen) in Northeast China in 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2883-2899, December.
    14. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    15. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    16. Jingyi Sun & Haidong Li & Ruya Xiao & Guohui Yao & Fengli Zou, 2024. "Dynamics of Heat Island Intensity in a Rapidly Urbanizing Area and the Cooling Effect of Ecological Land: A Case Study in Suzhou, Yangtze River Delta," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
    17. Bisrat Haile Gebrekidan & Thomas Heckelei & Sebastian Rasch, 2020. "Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    18. Gebrekidan, B.H., 2018. "Modeling Farmers Intensi cation Decisions with a Bayesian Belief Network: The case of the Kilombero Floodplain in Tanzania," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277081, International Association of Agricultural Economists.
    19. Yuan Meng & Dongyang Hou & Hanfa Xing, 2017. "Rapid Detection of Land Cover Changes Using Crowdsourced Geographic Information: A Case Study of Beijing, China," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    20. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:490-:d:1070395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.