IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1344-d891363.html
   My bibliography  Save this article

Momoge Internationally Important Wetland: Ecosystem Integrity Remote Assessment and Spatial Pattern Optimization Study

Author

Listed:
  • Jiaqi Han

    (College of Earth Sciences, Jilin University, Changchun 130061, China
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

  • Dongyan Wang

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

  • Shuwen Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

Abstract

Along the migration route between East Asia and Australia, numerous migratory birds use the Momoge Internationally Important Wetland as a habitat. Human activities and climate variability cause salinization and meadowization. We developed the “Quality-Pressure-Pattern-Service” remote assessment framework for ecosystem integrity, using a three level approach (TLA). The model was used to assess ecosystem integrity, identify improper wetland development, and provide spatial optimization strategies. The research region was dominated by wetlands, followed by dry fields. Wetlands continued to decrease between 1965 and 2019, as arable land and construction land continued to increase. Over the course of 54 years, ecosystem integrity declined. In 2019, around half of the areas had poor or extremely poor ecosystem integrity. Because the eastern study area contained many pristine inland beaches, the eastern study area displayed greater ecosystem integrity than the central and western areas. Priority should therefore be given to wetland restoration in the HJ core area (one of the three core areas of the reserve), where most of the herb marsh has been converted to arable land. This study revealed the integrity and authenticity of wetland ecosystems. Our results can aid in the protection of wetland habitats, encourage sustainable development, and help in the building of a national park in northeastern China.

Suggested Citation

  • Jiaqi Han & Dongyan Wang & Shuwen Zhang, 2022. "Momoge Internationally Important Wetland: Ecosystem Integrity Remote Assessment and Spatial Pattern Optimization Study," Land, MDPI, vol. 11(8), pages 1-21, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1344-:d:891363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    2. David Moreno-Mateos & Mary E Power & Francisco A Comín & Roxana Yockteng, 2012. "Structural and Functional Loss in Restored Wetland Ecosystems," PLOS Biology, Public Library of Science, vol. 10(1), pages 1-8, January.
    3. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    4. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    5. David Moreno Mateos & Mary E Power & Francisco A Comín & Roxana Yockteng, 2012. "Structural and Functional Loss in Restored Wetland Ecosystems," Working Papers id:4755, eSocialSciences.
    6. Ikhumhen, Harrison Odion & Li, Tianxin & Lu, Shanlong & Matomela, Nametso, 2020. "Assessment of a novel data driven habitat suitability ranking approach for Larus relictus specie using remote sensing and GIS," Ecological Modelling, Elsevier, vol. 432(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    2. Edward B. Barbier, 2016. "The Protective Value of Estuarine and Coastal Ecosystem Services in a Wealth Accounting Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 37-58, May.
    3. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    4. Jin Huang & Hao Yang & Wei He & Yu Li, 2022. "Ecological Service Value Tradeoffs: An Ecological Water Replenishment Model for the Jilin Momoge National Nature Reserve, China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    5. Yaxian Zhang & Jiangwen Fan & Suizi Wang, 2020. "Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    6. Juan Carlos Carrasco Baquero & Verónica Lucía Caballero Serrano & Fernando Romero Cañizares & Daisy Carolina Carrasco López & David Alejandro León Gualán & Rufino Vieira Lanero & Fernando Cobo-Gradín, 2023. "Water Quality Determination Using Soil and Vegetation Communities in the Wetlands of the Andes of Ecuador," Land, MDPI, vol. 12(8), pages 1-18, August.
    7. Paula Meli & Karen D Holl & José María Rey Benayas & Holly P Jones & Peter C Jones & Daniel Montoya & David Moreno Mateos, 2017. "A global review of past land use, climate, and active vs. passive restoration effects on forest recovery," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-17, February.
    8. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    9. Paula Meli & José María Rey Benayas & Patricia Balvanera & Miguel Martínez Ramos, 2014. "Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    10. Delanie M. Spangler & Anna Christina Tyler & Carmody K. McCalley, 2021. "Effects of Grazer Exclusion on Carbon Cycling in Created Freshwater Wetlands," Land, MDPI, vol. 10(8), pages 1-18, July.
    11. Swades Pal & Satyajit Paul, 2021. "Stability consistency and trend mapping of seasonally inundated wetlands in Moribund deltaic part of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12925-12953, September.
    12. Reiss, Kelly Chinners & Hernandez, Erica & Brown, Mark T., 2014. "Application of the landscape development intensity (LDI) index in wetland mitigation banking," Ecological Modelling, Elsevier, vol. 271(C), pages 83-89.
    13. Alex C Valach & Kuno Kasak & Kyle S Hemes & Tyler L Anthony & Iryna Dronova & Sophie Taddeo & Whendee L Silver & Daphne Szutu & Joseph Verfaillie & Dennis D Baldocchi, 2021. "Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
    14. Jonas Nordström & Cecilia Hammarlund, 2021. "You Win Some, You Lose Some: Compensating the Loss of Green Space in Cities Considering Heterogeneous Population Characteristics," Land, MDPI, vol. 10(11), pages 1-20, October.
    15. Jacob, Céline & Vaissiere, Anne-Charlotte & Bas, Adeline & Calvet, Coralie, 2016. "Investigating the inclusion of ecosystem services in biodiversity offsetting," Ecosystem Services, Elsevier, vol. 21(PA), pages 92-102.
    16. Van Dover, C.L. & Aronson, J. & Pendleton, L. & Smith, S. & Arnaud-Haond, S. & Moreno-Mateos, D. & Barbier, E. & Billett, D. & Bowers, K. & Danovaro, R. & Edwards, A. & Kellert, S. & Morato, T. & Poll, 2014. "Ecological restoration in the deep sea: Desiderata," Marine Policy, Elsevier, vol. 44(C), pages 98-106.
    17. Michael C. Hassett & Alan D. Steinman, 2022. "Wetland Restoration through Excavation: Sediment Removal Results in Dramatic Water Quality Improvement," Land, MDPI, vol. 11(9), pages 1-17, September.
    18. Jenneke M. Visser & Scott M. Duke-Sylvester, 2017. "LaVegMod v2: Modeling Coastal Vegetation Dynamics in Response to Proposed Coastal Restoration and Protection Projects in Louisiana, USA," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    19. Anne-Charlotte Vaissière & Fabien Quétier & Adeline Bierry & Clémence Vannier & Florence Baptist & Sandra Lavorel, 2021. "Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function?," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    20. Sponagel, Christian & Angenendt, Elisabeth & Piepho, Hans-Peter & Bahrs, Enno, 2021. "Farmers’ preferences for nature conservation compensation measures with a focus on eco-accounts according to the German Nature Conservation Act," Land Use Policy, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1344-:d:891363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.