IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1099-d865614.html
   My bibliography  Save this article

The Effect of Innovation City Construction on Carbon Emissions in China

Author

Listed:
  • Cong Wei

    (School of Economics, Zhejiang University of Finance and Economics, Hangzhou 310018, China
    These authors contributed equally to this work.)

  • Jiayang Kong

    (School of Economics and Business Administration, Central China Normal University, Wuhan 430079, China
    School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
    These authors contributed equally to this work.)

Abstract

Innovation, as a driving force to economic growth, has been referred to as an important development strategy by the central government of China. In order to improve the innovative capability of cities, Chinese officials started to construct innovation cities in 2008. Previous studies have investigated the ecological and economic effects of innovation city construction; however, the environmental effect of the project remains unclear. In this study, we constructed an annual panel of 285 cities in China, from 2007 to 2015, to assess the effect of innovation city construction on carbon emissions. Our baseline results are obtained from a difference-in-differences estimator, comparing cities with and without introducing innovation city construction, whose results show that innovation city construction reduces carbon emissions by about 2% on average. We found a similar effect of innovation city construction on carbon emissions when we controlled for the estimated propensity of a city to launch the innovation city construction based on a series of urban characteristics, such as gross regional product and population. We obtained comparable estimates when we used the propensity score as weights to balance urban characteristics between cities with and without launching the innovation city construction. Our results also show that innovation city construction has a larger effect on carbon emissions in western, poorer, and fewer population cities than in those with opposite characteristics. We found suggested the persistence of the effect that innovation city construction had on carbon emissions, implying that the Chinese government should encourage innovation to reduce carbon emissions. Besides, we performed a series of robustness tests, including the leave-one-city-out test, the bootstrapping test, and the permutation test, to illustrate the robustness of our results.

Suggested Citation

  • Cong Wei & Jiayang Kong, 2022. "The Effect of Innovation City Construction on Carbon Emissions in China," Land, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1099-:d:865614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaoyang Zhao & Yanhong Zheng & Yuhong Chen & Chong Ye & Zeyu He & Daqing Gong, 2021. "Research on the Impact of Innovative City Construction on Financial Development: Evidence from China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-10, November.
    2. Yu, Yantuan & Chen, Xudong & Zhang, Ning, 2022. "Innovation and energy productivity: An empirical study of the innovative city pilot policy in China✰," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Song Wang & Jiexin Wang & Chenqi Wei & Xueli Wang & Fei Fan, 2021. "Collaborative innovation efficiency: From within cities to between cities—Empirical analysis based on innovative cities in China," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1330-1360, September.
    4. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Feng, Zhijun & Cai, Hechang & Chen, Zinan & Zhou, Wen, 2022. "Influence of an interurban innovation network on the innovation capacity of China: A multiplex network perspective," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    6. Wang, Man & Yang, Qiuping, 2022. "The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach," Finance Research Letters, Elsevier, vol. 47(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.
    2. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Luo & Yang Fu & Hui Li, 2023. "Do Urban Innovation Policies Reduce Carbon Emission? Empirical Evidence from Chinese Cities with DID," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    2. Yiping Sun & Xiangyi Li & Tengyuan Zhang & Jiawei Fu, 2022. "Does Trade Policy Uncertainty Exacerbate Environmental Pollution?—Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    3. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    4. Dongmei Li & Renai Jiang & Zheyuan Lu & Shanghong Sun & Longguo Wang, 2023. "Does the Construction of High-Speed Rail Change the Development of Regional Finance?," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    5. Liu, Xiangsheng & Lv, Lingli, 2023. "The effect of China's low carbon city pilot policy on corporate financialization," Finance Research Letters, Elsevier, vol. 54(C).
    6. Xiaokun Su & Chenrouyu Zheng & Yefei Yang & Yafei Yang & Wen Zhao & Yue Yu, 2022. "Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    7. Fengting Zhang & Yang Lv & Md Nazirul Islam Sarker, 2022. "Spatio-Temporal Evolution and Development Path of Industry–University–Research Cooperation and Economic Vulnerability: Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    8. Yu Zhang & Xi Cai & Yanying Mao & Liudan Jiao & Liu Wu, 2023. "What Is the State of Development of Eco-Wellbeing Performance in China? An Analysis from a Three-Stage Network Perspective," Land, MDPI, vol. 12(8), pages 1-18, July.
    9. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    10. Keyan Zheng & Fagang Hu & Yaliu Yang, 2023. "Data-Driven Evaluation and Recommendations for Regional Synergy Innovation Capability," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    11. Xu, Xin & Huang, Shupei & Lucey, Brian M. & An, Haizhong, 2023. "The impacts of climate policy uncertainty on stock markets: Comparison between China and the US," International Review of Financial Analysis, Elsevier, vol. 88(C).
    12. Jianwei Zhang & Heng Li & Guoxin Jiao & Jiayi Wang & Jingjing Li & Mengzhen Li & Haining Jiang, 2022. "Spatial Pattern of Technological Innovation in the Yangtze River Delta Region and Its Impact on Water Pollution," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
    13. Min Qian & Zhenpeng Cheng & Zhengwen Wang & Dingyi Qi, 2022. "What Affects Rural Ecological Environment Governance Efficiency? Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    14. Chen Li & Heng Li & Xionghe Qin, 2022. "Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(3), pages 1-29, January.
    15. Guiqiong Xu & Chen Dong & Lei Meng, 2022. "Research on the Collaborative Innovation Relationship of Artificial Intelligence Technology in Yangtze River Delta of China: A Complex Network Perspective," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    16. Cai, Hechang & Wang, Zilong & Zhang, Zhiwen & Xu, Liuyang, 2023. "Does environmental regulation promote technology transfer? Evidence from a partially linear functional-coefficient panel model," Economic Modelling, Elsevier, vol. 124(C).
    17. Rui Ding & Tao Zhou & Jian Yin & Yilin Zhang & Siwei Shen & Jun Fu & Linyu Du & Yiming Du & Shihui Chen, 2022. "Does the Urban Agglomeration Policy Reduce Energy Intensity? Evidence from China," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    18. Chen Li & Le Zhang & Qinyi Gu & Jia Guo & Yi Huang, 2022. "Spatio-Temporal Differentiation Characteristics and Urbanization Factors of Urban Household Carbon Emissions in China," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    19. Song Wang & Yixiao Wang & Chenxin Zhou & Xueli Wang, 2022. "Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China," IJERPH, MDPI, vol. 19(19), pages 1-31, September.
    20. Xin Dai & Jie Tang & Qin Huang & Wenyue Cui, 2023. "Knowledge Spillover and Spatial Innovation Growth: Evidence from China’s Yangtze River Delta," Sustainability, MDPI, vol. 15(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1099-:d:865614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.