IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p87-d482499.html
   My bibliography  Save this article

Tracking the Role of Policies and Economic Factors in Driving the Forest Change Trajectories within the Guangdong-Hongkong-Macao Region of China: A Remote Sensing Perspective

Author

Listed:
  • Yuyang Xian

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Yongquan Lu

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Zipporah Musyimi

    (Department of Environmental Remote Sensing and Geoinformatics, University of Trier, 54286 Trier, Germany)

  • Guilin Liu

    (School of Geography, South China Normal University, Guangzhou 510631, China)

Abstract

Though forest ecosystems play a critical role in enhancing ecological, environmental, economic, and societal sustainability, on a global scale, their future outlooks are uncertain given the wide-ranging threats they are exposed to. The uniqueness of this study is to provide a line of evidence in which forest change trajectories are not only tracked but also evaluated through the lenses of forestry and economic oriented events’ timelines. The dynamics of forest change trajectories were mined using a temporal model. To understand the forces driving the changes, the change trajectories were linked to the timelines when forestry policies and economic factors where adopted. During 1980–1990, the forest change trajectory assumed a peak (forest gain). This was interpreted as a response to the adoption of policies that promoted ecological conservation. During 1995–2010, the forest change trajectories reflected the response to the antagonistic effects of forest-oriented policies and the economy-oriented drivers. During 2010–2015, the forest change trajectories assumed a deep (forest loss). This was attributed as a response to the economy-oriented factors. However, inferences from the results indicated that deforestation driven by economic factors was restricted by forest management policies. Though the role of economic factors has promoted developments within the study area, forest policies still constrain illegal logging and play a key role in protecting forests. We hope that insights from this study will inform, support and guide decisions for precise and smart sustainable forest management plans.

Suggested Citation

  • Yuyang Xian & Yongquan Lu & Zipporah Musyimi & Guilin Liu, 2021. "Tracking the Role of Policies and Economic Factors in Driving the Forest Change Trajectories within the Guangdong-Hongkong-Macao Region of China: A Remote Sensing Perspective," Land, MDPI, vol. 10(1), pages 1-18, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:87-:d:482499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    2. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    3. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    3. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    4. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    5. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    6. Sang-Don Lee, 2017. "Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea," Sustainability, MDPI, vol. 9(12), pages 1-27, November.
    7. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    8. Sébastien Nusslé & Kathleen R Matthews & Stephanie M Carlson, 2015. "Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
    9. Liam D. Bailey & Martijn Pol & Frank Adriaensen & Aneta Arct & Emilio Barba & Paul E. Bellamy & Suzanne Bonamour & Jean-Charles Bouvier & Malcolm D. Burgess & Anne Charmantier & Camillo Cusimano & Bla, 2022. "Bird populations most exposed to climate change are less sensitive to climatic variation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Dissanayake, Sahan T.M. & Önal, Hayri & Westervelt, James D. & Balbach, Harold E., 2012. "Incorporating species relocation in reserve design models: An example from Ft. Benning GA," Ecological Modelling, Elsevier, vol. 224(1), pages 65-75.
    11. Jing Zhen & Xinyuan Wang & Qingkai Meng & Jingwei Song & Ying Liao & Bo Xiang & Huadong Guo & Chuansheng Liu & Ruixia Yang & Lei Luo, 2018. "Fine-Scale Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change and Human Disturbance (2015–2050): A Case Study in Ya’an, China," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    12. Kato, E., 2009. "Soil and water conservation technologies: a buffer against production risk in the face of climate change?: insights from the Nile Basin in Ethiopia," IWMI Working Papers H042477, International Water Management Institute.
    13. Omann, Ines & Stocker, Andrea & Jäger, Jill, 2009. "Climate change as a threat to biodiversity: An application of the DPSIR approach," Ecological Economics, Elsevier, vol. 69(1), pages 24-31, November.
    14. Shengwang Bao & Fan Yang, 2024. "Identification of Potential Habitats and Adjustment of Protected Area Boundaries for Large Wild Herbivores in the Yellow-River-Source National Park, China," Land, MDPI, vol. 13(2), pages 1-19, February.
    15. V. P. Khanduri & C. M. Sharma & S. P. Singh, 2008. "The effects of climate change on plant phenology," Environment Systems and Decisions, Springer, vol. 28(2), pages 143-147, June.
    16. Guanjie Jiao & Xiawei Shentu & Xiaochen Zhu & Wenbo Song & Yujia Song & Kexuan Yang, 2022. "Utility of Deep Learning Algorithms in Initial Flowering Period Prediction Models," Agriculture, MDPI, vol. 12(12), pages 1-17, December.
    17. Junhua Hu & Zhigang Jiang, 2011. "Climate Change Hastens the Conservation Urgency of an Endangered Ungulate," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    18. Gregorio Moreno-Rueda & Juan Pleguezuelos & Esmeralda Alaminos, 2009. "Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus," Climatic Change, Springer, vol. 92(1), pages 235-242, January.
    19. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    20. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:87-:d:482499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.