IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1219-d675871.html
   My bibliography  Save this article

Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China

Author

Listed:
  • Ren Yang

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Baoqing Qin

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yuancheng Lin

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Industrialization and urbanization have led to continuous urban development. The rapid change in land-use type and extent has a significant impact on the capacity of ecosystem services. Changes in the landscape pattern of roads, rivers, railway stations, and expressway entrances and exits have evident geographical proximity effects. We used landscape pattern indices and ecosystem service value (ESV) to evaluate the landscape pattern and ESV spatial differentiation of the Pearl River Delta region and its typical transportation infrastructure and rivers in 1990, 2000, and 2017. The results show that rapid urbanization and industrialization have led to changes in urban land use along the Pearl River Estuary. Urban land changes on the east bank of the Pearl River are greater than urban land changes on the west bank of the Pearl River; the landscape diversity of the Pearl River Delta has increased, the connectivity of the landscape has decreased, and the degree of fragmentation has increased. Second, the city size of the Pearl River Delta was negatively correlated with the ESVs. The ESVs in the core areas of the Pearl River Delta urban agglomeration were smaller than those in the fringe areas. With the gradient change in urban land use, ESVs showed a growing trend from the city center to the surrounding areas. The key areas for ecological protection and restoration should be central urban areas and suburbs. Third, the siphoning effect of the buffer zones of railway stations and expressway entrances and exits was very strong and drove the development and utilization of the surrounding land. As the degree of land development in the buffer zone decreased, the ESVs increased. Fourth, different grades of roads in the Pearl River Delta had different impacts on the regional landscape and ESVs. County roads had a greater interference effect than expressways, national roads, and provincial roads, and the riverside plains of the Pearl River Delta have a large development space, low urban development costs, and multiple land-use activities that have profoundly changed the landscape of the river buffer zone.

Suggested Citation

  • Ren Yang & Baoqing Qin & Yuancheng Lin, 2021. "Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China," Land, MDPI, vol. 10(11), pages 1-16, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1219-:d:675871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    3. Chun Yang, 2020. "The transformation of foreign investment-induced ‘exo(genous)-urbanisation’ amidst industrial restructuring in the Pearl River Delta, China," Urban Studies, Urban Studies Journal Limited, vol. 57(3), pages 618-635, February.
    4. Sam Asher & Teevrat Garg & Paul Novosad, 2020. "The Ecological Impact of Transportation Infrastructure," The Economic Journal, Royal Economic Society, vol. 130(629), pages 1173-1199.
    5. Breyne, Johanna & Dufrêne, Marc & Maréchal, Kevin, 2021. "How integrating 'socio-cultural values' into ecosystem services evaluations can give meaning to value indicators," Ecosystem Services, Elsevier, vol. 49(C).
    6. Kremer, Peleg & Hamstead, Zoé A. & McPhearson, Timon, 2016. "The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios," Environmental Science & Policy, Elsevier, vol. 62(C), pages 57-68.
    7. Adolf K.Y. Ng & Zaili Yang & Stephen Cahoon & Paul T.W. Lee & Winai Homosombat & Adolf K. Y. Ng & Xiaowen Fu, 2016. "Regional Transformation and Port Cluster Competition: The Case of the Pearl River Delta in South China," Growth and Change, Wiley Blackwell, vol. 47(3), pages 349-362, September.
    8. Nijhum, Farzana & Westbrook, Cherie & Noble, Bram & Belcher, Ken & Lloyd-Smith, Patrick, 2021. "Evaluation of alternative land-use scenarios using an ecosystem services-based strategic environmental assessment approach," Land Use Policy, Elsevier, vol. 108(C).
    9. Kambo, Amrita & Drogemuller, Robin & Yarlagadda, Prasad K.D.V., 2019. "Assessing Biophilic Design Elements for ecosystem service attributes – A sub-tropical Australian case," Ecosystem Services, Elsevier, vol. 39(C).
    10. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbo Cai, 2022. "Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region," Land, MDPI, vol. 11(9), pages 1-15, September.
    2. Tianle Li & Xinqi Zheng & Chunxiao Zhang & Ruiguo Wang & Jiayu Liu, 2022. "Mining Spatial Correlation Patterns of the Urban Functional Areas in Urban Agglomeration: A Case Study of Four Typical Urban Agglomerations in China," Land, MDPI, vol. 11(6), pages 1-18, June.
    3. Jianxiong Bao & Wen Wang & Tianqing Zhao, 2023. "Spatiotemporal Changes of Ecosystem Service Values in Response to Land Cover Dynamics in China from 1992 to 2020," Sustainability, MDPI, vol. 15(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    2. Min Liu & Jianpeng Fan & Yuanzheng Li & Qizheng Mao, 2023. "Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment," Land, MDPI, vol. 12(7), pages 1-27, July.
    3. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    4. Mengzhu Liu & Leilei Min & Jingjing Zhao & Yanjun Shen & Hongwei Pei & Hongjuan Zhang & Yali Li, 2021. "The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    5. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    6. Noah Kaiser & Christina K. Barstow, 2022. "Rural Transportation Infrastructure in Low- and Middle-Income Countries: A Review of Impacts, Implications, and Interventions," Sustainability, MDPI, vol. 14(4), pages 1-48, February.
    7. Shujun Liu & Xinzhuan Yao & Degang Zhao & Litang Lu, 2021. "Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7140-7155, May.
    8. Teevrat Garg & Maulik Jagnani & Hemant K. Pullabhotla, 2022. "Structural transformation and environmental externalities," Papers 2212.02664, arXiv.org.
    9. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    10. Xie, Dongshui & Bai, Caiquan & Zhang, Yuwei, 2023. "Relation-based governance, financial crisis shock, and economic growth in China," Economic Modelling, Elsevier, vol. 129(C).
    11. Tao Wu & Peipei Zha & Mengjie Yu & Guojun Jiang & Jianzhen Zhang & Qinglong You & Xuefeng Xie, 2021. "Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-18, July.
    12. Mateo Cordier & José Pérez Agúndez & Walter Hecq & Bertrand Hamaide, 2013. "A guiding framework for ecosystem services monetization in ecological-economic modeling," Working Papers CEB 13-018, ULB -- Universite Libre de Bruxelles.
    13. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    14. Zheng, Shiyuan & Jiang, Changmin & Fu, Xiaowen, 2021. "Investment competition on dedicated terminals under demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    15. Liquan Guo & Zhongzhen Yang, 2019. "Relationship Between Shipping Accessibility and Maritime Transport Demand: the Case of Mainland China," Networks and Spatial Economics, Springer, vol. 19(1), pages 149-175, March.
    16. Francisco B. Galarza & Joanna Kámiche Zegarra & Rosario Gómez, 2023. "Roads and Deforestation: Do Local Institutions Matter?," Working Papers 192, Peruvian Economic Association.
    17. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    18. Fulong Wu, 2020. "Adding new narratives to the urban imagination: An introduction to ‘New directions of urban studies in China’," Urban Studies, Urban Studies Journal Limited, vol. 57(3), pages 459-472, February.
    19. Aleksander Grzelak, 2022. "The income-assets relationship for farms operating under selected models in Poland," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 59-67.
    20. Rong Guo & Tong Wu & Mengran Liu & Mengshi Huang & Luigi Stendardo & Yutong Zhang, 2019. "The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China," IJERPH, MDPI, vol. 16(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1219-:d:675871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.