IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1106-d660262.html
   My bibliography  Save this article

Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria

Author

Listed:
  • Auwalu Faisal Koko

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Yue Wu

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
    International Center for Architecture and Urban Development Studies, Zhejiang University, Hangzhou 310058, China)

  • Ghali Abdullahi Abubakar

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Akram Ahmed Noman Alabsi

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Roknisadeh Hamed

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Muhammed Bello

    (Department of Architecture, Kaduna Polytechnic, P. M. B. 2021, Kaduna 800262, Nigeria)

Abstract

Rapid urban expansion and the alteration of global land use/land cover (LULC) patterns have contributed substantially to the modification of urban climate, due to variations in Land Surface Temperature (LST). In this study, the LULC change dynamics of Kano metropolis, Nigeria, were analysed over the last three decades, i.e., 1990–2020, using multispectral satellite data to understand the impact of urbanization on LST in the study area. The Maximum Likelihood classification method and the Mono-window algorithm were utilised in classifying land uses and retrieving LST data. Spectral indices comprising the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) were also computed. A linear regression analysis was employed in order to examine the correlation between land surface temperature and the various spectral indices. The results indicate significant LULC changes and urban expansion of 152.55 sq. km from 1991 to 2020. During the study period, the city’s barren land and water bodies declined by approximately 172.58 sq. km and 26.55 sq. km, respectively, while vegetation increased slightly by 46.58 sq. km. Further analysis showed a negative correlation between NDVI and LST with a Pearson determination coefficient (R 2 ) of 0.6145, 0.5644, 0.5402, and 0.5184 in 1991, 2000, 2010, and 2020 respectively. NDBI correlated positively with LST, having an R 2 of 0.4132 in 1991, 0.3965 in 2000, 0.3907 in 2010, and 0.3300 in 2020. The findings of this study provide critical climatic data useful to policy- and decision-makers in optimizing land use and mitigating the impact of urban heat through sustainable urban development.

Suggested Citation

  • Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1106-:d:660262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur Rahaman & Selim Jahangir & Md Senaul Haque & Ruishan Chen & Pankaj Kumar, 2021. "Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6481-6501, April.
    2. Shahnilla Haider Rizvi & Hira Fatima & Khan Alam & Muhammad Jawed Iqbal, 2021. "The Surface Urban Heat Island Intensity and Urban Expansion: A comparative analysis for the coastal areas of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5520-5537, April.
    3. Siddique Ullah & Adnan Ahmad Tahir & Tahir Ali Akbar & Quazi K. Hassan & Ashraf Dewan & Asim Jahangir Khan & Mudassir Khan, 2019. "Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    4. Auwalu Faisal Koko & Wu Yue & Ghali Abdullahi Abubakar & Roknisadeh Hamed & Akram Ahmed Noman Alabsi, 2020. "Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov)," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    5. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    6. Sudhir Singh & Prashant Srivastava & Avinash Pandey & Sandeep Gautam, 2013. "Integrated Assessment of Groundwater Influenced by a Confluence River System: Concurrence with Remote Sensing and Geochemical Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4291-4313, September.
    7. Murat Atasoy, 2020. "Assessing the impacts of land-use/land-cover change on the development of urban heat island effects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7547-7557, December.
    8. Tommaso Barbieri & Francesca Despini & Sergio Teggi, 2018. "A Multi-Temporal Analyses of Land Surface Temperature Using Landsat-8 Data and Open Source Software: The Case Study of Modena, Italy," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanzheng Li & Zezhi Zhao & Yashu Xin & Ao Xu & Shuyan Xie & Yi Yan & Lan Wang, 2022. "How Are Land-Use/Land-Cover Indices and Daytime and Nighttime Land Surface Temperatures Related in Eleven Urban Centres in Different Global Climatic Zones?," Land, MDPI, vol. 11(8), pages 1-22, August.
    2. Jiaxing Xin & Jun Yang & Dongqi Sun & Tianyu Han & Chunrui Song & Zhipeng Shi, 2022. "Seasonal Differences in Land Surface Temperature under Different Land Use/Land Cover Types from the Perspective of Different Climate Zones," Land, MDPI, vol. 11(8), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    2. Yaoyao Zhu & Gabriel Hoh Teck Ling, 2022. "A Systematic Review of Morphological Transformation of Urban Open Spaces: Drivers, Trends, and Methods," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    3. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    4. Vishal Chettry & Meenal Surawar, 2021. "Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11913-11935, August.
    5. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    6. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    7. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.
    8. Muhammad Amir Siddique & Fan Boqing & Liu Dongyun, 2023. "Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    9. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    10. Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    11. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    12. Hong Ran & Yonggang Ma & Zhonglin Xu, 2022. "Evaluation and Prediction of Land Use Ecological Security in the Kashgar Region Based on Grid GIS," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    13. Md. Omar Sarif & Rajan Dev Gupta, 2022. "Spatiotemporal mapping of Land Use/Land Cover dynamics using Remote Sensing and GIS approach: a case study of Prayagraj City, India (1988–2018)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 888-920, January.
    14. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    15. Ankita P. Dadhich & Rohit Goyal & Pran N. Dadhich, 2021. "Assessment and Prediction of Groundwater using Geospatial and ANN Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2879-2893, July.
    16. Mirza Waleed & Muhammad Sajjad & Anthony Owusu Acheampong & Md. Tauhidul Alam, 2023. "Towards Sustainable and Livable Cities: Leveraging Remote Sensing, Machine Learning, and Geo-Information Modelling to Explore and Predict Thermal Field Variance in Response to Urban Growth," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    17. Xi Zhu & Yansha Wen & Xiang Li & Feng Yan & Shuhe Zhao, 2023. "Remote Sensing Inversion of Typical Water Quality Parameters of a Complex River Network: A Case Study of Qidong’s Rivers," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    18. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    19. Alademomi Alfred S. & Okolie Chukwuma J. & Daramola Olagoke E. & Agboola Raphael O. & Salami Tosin J., 2020. "Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment," Quaestiones Geographicae, Sciendo, vol. 39(3), pages 87-109, September.
    20. Hafiz Umar Farid & Hafiz Usman Ayub & Zahid Mahmood Khan & Ijaz Ahmad & Muhammad Naveed Anjum & Rana Muhammad Asif Kanwar & Muhammad Mubeen & Pervaiz Sakinder, 2023. "Groundwater quality risk assessment using hydro-chemical and geospatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8343-8365, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1106-:d:660262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.