IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10408-d638300.html
   My bibliography  Save this article

Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt

Author

Listed:
  • Salah Elsayed

    (Agricultural Engineering, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt)

  • Mohamed Gad

    (Hydrogeology, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt)

  • Mohamed Farouk

    (Agricultural Engineering, Surveying of Natural Resources in Environmental Systems Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt)

  • Ali H. Saleh

    (Environmental Geology, Surveying of Natural Resources in Environmental Systems Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt)

  • Hend Hussein

    (Geology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt)

  • Adel H. Elmetwalli

    (Department of Agricultural Engineering, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt)

  • Osama Elsherbiny

    (Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt)

  • Farahat S. Moghanm

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Moustapha E. Moustapha

    (Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Mostafa A. Taher

    (Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
    Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt)

  • Ebrahem M. Eid

    (Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
    Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Magda M. Abou El-Safa

    (Environmental Geology, Surveying of Natural Resources in Environmental Systems Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt)

Abstract

Standard methods are limited for monitoring and managing water quality indicators (WQIs) in real-time and on a large scale. Consequently, there is an urgent need to use reliable, practical, swift, and cost-effective monitoring tools that can be easily deployed and assist decision makers in assessing key indicators relevant to surface water quality in a comprehensive manner. Surface water samples were collected and evaluated for water quality at 16 distinct sites across the Qaroun Lake in 2018 and 2019. Different WQIs, including total dissolved solids (TDS), transparency, total suspended solids (TSS), chlorophyll-a (Chl-a), and total phosphorus (TP), were tested for aquatic utilization. An integrated approach comprising WQIs, geospatial techniques, hyperspectral reflectance indices (SRIs) (commonly used SRIs, two-band and three-band SRIs (Spectral index calculated from water spectral reflectance of two or three wavelengths)), and partial least square regression (PLSR) models were used to assess the water quality of Qaroun Lake. According to the findings, the water quality attributes are polluted to varying degrees. The majority of commonly used SRIs presented moderately relationship with four WQIs (transparency, TSS, Chl-a, and TP) (R 2 = 0.45 to 0.64), while the majority of newly two-band SRIs (NSRIs-2b) indicated moderate to strong relationships with WQIs (R 2 = 0.51 to 0.74), and the majority of newly three band SRIs (NSRIs-3b) presented strong relationships with WQIs (R 2 = 0.67 to 0.81). Broadly, the highest coefficients of determination were noticed with the NSRIs-3b followed by the NSRIs-2b and then the commonly used SRIs. For example, the NSRIs-3b (NDSI 648,712,696 ) had stronger relationships with transparency, TSS, and Chl-a with R 2 = 0.77, 0.66, and 0.81, respectively, than other SRIs. In addition, the NSRIs-3b (NDSI 620,610,622 ) showed the highest R 2 of 0.73 with TSS. The NSRIs-3b coupling with PLSR predicted the WQIs with satisfactory accuracy in the calibration (reach up R 2 = 0.85) and validation (reach up R 2 = 0.81) datasets. The overall findings of this research study showed that deriving an optimized NSRIs-3b from spectrum region and combining it with PLSR model could be a practical tool for managing water quality of the Qaroun Lake by accurately, timely, and non-destructively monitoring the WQIs.

Suggested Citation

  • Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10408-:d:638300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayres, W.S. & Busia, A. & Dinar, A. & Hirji, R. & Lintner, S.F. & McCalla, A.F. & Robelus, R., 1997. "Integrated Lake and Reservoir Management. World Bank Approach and Experience," Papers 358, World Bank - Technical Papers.
    2. Elsayed, Salah & Elhoweity, Mohamed & Ibrahim, Hazem H. & Dewir, Yaser Hassan & Migdadi, Hussein M. & Schmidhalter, Urs, 2017. "Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 189(C), pages 98-110.
    3. Sudhir Singh & Prashant Srivastava & Avinash Pandey & Sandeep Gautam, 2013. "Integrated Assessment of Groundwater Influenced by a Confluence River System: Concurrence with Remote Sensing and Geochemical Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4291-4313, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaozhen Guo & Huanhuan Wu & Huiyi Jin & Guang Yang & Xiaoxu Wu, 2022. "Remote Sensing Inversion of Suspended Matter Concentration Using a Neural Network Model Optimized by the Partial Least Squares and Particle Swarm Optimization Algorithms," Sustainability, MDPI, vol. 14(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    2. Adel H. Elmetwalli & Yasser S. A. Mazrou & Andrew N. Tyler & Peter D. Hunter & Osama Elsherbiny & Zaher Mundher Yaseen & Salah Elsayed, 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    3. Ankita P. Dadhich & Rohit Goyal & Pran N. Dadhich, 2021. "Assessment and Prediction of Groundwater using Geospatial and ANN Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2879-2893, July.
    4. Xi Zhu & Yansha Wen & Xiang Li & Feng Yan & Shuhe Zhao, 2023. "Remote Sensing Inversion of Typical Water Quality Parameters of a Complex River Network: A Case Study of Qidong’s Rivers," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    5. Hafiz Umar Farid & Hafiz Usman Ayub & Zahid Mahmood Khan & Ijaz Ahmad & Muhammad Naveed Anjum & Rana Muhammad Asif Kanwar & Muhammad Mubeen & Pervaiz Sakinder, 2023. "Groundwater quality risk assessment using hydro-chemical and geospatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8343-8365, August.
    6. Shailendra Pratap & Prashant K. Srivastava & Ashish Routray & Tanvir Islam & Rajesh Kumar Mall, 2020. "Appraisal of hydro-meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 635-654, January.
    7. Chaitanya B. Pande & Kanak N. Moharir & Sudhir Kumar Singh & Abhay M. Varade, 2020. "An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4867-4887, June.
    8. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    9. El-Hendawy, Salah E. & Al-Suhaibani, Nasser A. & Elsayed, Salah & Hassan, Wael M. & Dewir, Yaser Hassan & Refay, Yahya & Abdella, Kamel A., 2019. "Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates," Agricultural Water Management, Elsevier, vol. 217(C), pages 356-373.
    10. Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
    11. Chaitanya B. Pande & Kanak N. Moharir & Sudhir Kumar Singh & Bloodless Dzwairo, 2020. "Groundwater evaluation for drinking purposes using statistical index: study of Akola and Buldhana districts of Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7453-7471, December.
    12. Zubairul Islam & Muthukumarasamy Ranganathan & Murugesan Bagyaraj & Sudhir Kumar Singh & Sandeep Kumar Gautam, 2022. "Multi-decadal groundwater variability analysis using geostatistical method for groundwater sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3146-3164, March.
    13. Fan Ding & Changchun Li & Weiguang Zhai & Shuaipeng Fei & Qian Cheng & Zhen Chen, 2022. "Estimation of Nitrogen Content in Winter Wheat Based on Multi-Source Data Fusion and Machine Learning," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
    14. Jinjie Miao & Guoliang Liu & Bibo Cao & Yonghong Hao & Jianmimg Chen & Tian−Chyi Yeh, 2014. "Identification of Strong Karst Groundwater Runoff Belt by Cross Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2903-2916, August.
    15. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    16. Mohamed E. Abowaly & Abdel-Aziz A. Belal & Enas E. Abd Elkhalek & Salah Elsayed & Rasha M. Abou Samra & Abdullah S. Alshammari & Farahat S. Moghanm & Kamal H. Shaltout & Saad A. M. Alamri & Ebrahem M., 2021. "Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling," Sustainability, MDPI, vol. 13(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10408-:d:638300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.